早教吧作业答案频道 -->数学-->
在△ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DE∥BC交∠ACB与∠ACP的平分线于点D、E.(1)点O在什么位置时,四边形ADCE是矩形?说明理由.(2)在(1)的条件下,当AC与BC
题目详情
在△ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DE∥BC交∠ACB与∠ACP的平分线于点D、E.

(1)点O在什么位置时,四边形ADCE是矩形?说明理由.
(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?

(1)点O在什么位置时,四边形ADCE是矩形?说明理由.
(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?
▼优质解答
答案和解析
(1)当O为AC的中点则四边形ADCE是矩形;
理由:∵CE平分∠ACP,
∴∠ACE=∠PCE,
∵DE∥BC,
∴∠OEC=∠ECP,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OD,
∴OD=OE.
∵AO=CO,EO=DO,
∴四边形ADCE为平行四边形,
∵DC、CE是∠ACB与∠ACP的平分线,
∴∠DCE=90°,
∴四边形AECF是矩形;
(2)当AC⊥BC时,四边形ADCE是正方形.
理由:∵∠BCA=90°,
∵DE∥CB,
∴∠DOA=90°,
则DE⊥AC,
∴矩形AECF是正方形.
理由:∵CE平分∠ACP,
∴∠ACE=∠PCE,
∵DE∥BC,

∴∠OEC=∠ECP,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OD,
∴OD=OE.
∵AO=CO,EO=DO,
∴四边形ADCE为平行四边形,
∵DC、CE是∠ACB与∠ACP的平分线,
∴∠DCE=90°,
∴四边形AECF是矩形;
(2)当AC⊥BC时,四边形ADCE是正方形.
理由:∵∠BCA=90°,
∵DE∥CB,
∴∠DOA=90°,
则DE⊥AC,
∴矩形AECF是正方形.
看了在△ABC中,点O是AC边上一...的网友还看了以下:
若a,x属于R,集合A={2,4,x^2减5x+9},B={3,x^2+ax+a},C={x^2+ 2020-04-05 …
x+(1/x)=c+(1/c)的解为x1=c,x2=(1/x),x-(1/x)=c-(1/c)的解 2020-05-13 …
已知a小于0,b小于0,c小于0,且a+b+c=-1,求1/a+1/b+1/c的最大值 2020-05-15 …
若方程组﹛a₁x+b₁y=c₁ 的解是﹛x=3 ,则方程组﹛a₁(x-1)+b₁(y+1)=c₁ 2020-05-16 …
已知关于x的方程x+1/x=c+1/c的解是x1=c,x2=1/c,试根据此解特点解关于x的方程: 2020-05-17 …
1.m-mmX=3+1,y=9+(1/3),试求y与x的函数关系式2.已知:a+x方=2005,b 2020-06-03 …
已知abc均为正数学且满足3^a=4^b=6^c则A.1/c=1/a+1/bB.1/c=2/a+2 2020-06-03 …
程x+1/x=c+1/c的解是c或1/c,那么方程x+1/4x-6=(a*a+3a+1)/2a的解 2020-06-12 …
设0<a,b,c<1,证明:(1-a)b,(1-b)c,(1-c)a不能都大于1/4 2020-06-18 …
设0<a,b,c<1证明(1-a)b,(1-b)c(1-c)a不能大于1/4我也知道用反证法 2020-06-18 …