早教吧作业答案频道 -->数学-->
已知a1,a2...an为两两不相等的正整数,求证对于任意正整数n,不等式a1+a2/2^2+a3/3^2+...+an/n^2≥1+1/2+...+1/n成立使用排序不等式
题目详情
已知a1,a2...an为两两不相等的正整数,求证对于任意正整数n,不等式a1+a2/2^2+a3/3^2+...+an/n^2≥1+1/2+...+1/n成立
使用排序不等式
使用排序不等式
▼优质解答
答案和解析
a1到an由于两两不相等,考虑最小的a1到an则是1到n的集合那么a1,a2.an则是1,2,3.n的一个乱序排列n>(n-1)>(n-2).>11/n^2 < 1/(n-1)^2 < 1/(n-2)^2 < .< 1由乱序和大于逆序和所以a1+a2/2^2+a3/3^2+...+an/n^2≥ n/n^2 + ...
看了已知a1,a2...an为两两...的网友还看了以下:
如果对于任意给定的正数总存在一个正整数N,当n>N证:对于任意给定的e>0,要使|yn-2|=|2 2020-07-09 …
高手整数数列{an}满足a1a2+a2a3+...+a(n-1)an=(n-1)n(n+1)/3, 2020-07-09 …
爆难高手整数数列{an}满足a1a2+a2a3+...+a(n-1)an=(n-1)n(n+1)/ 2020-07-09 …
设函数f(x)=a1sin(x)+a2sin(2x)+……+ansin(nx),其中a1……an均 2020-07-18 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
六年级数学在能够被2整除的两位数中,最大的是()如果n是一个正整数,且n能被5整除,同时n能整六年级 2020-10-31 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …
数列是否存在常数abc使等式1(n^2-1^2)+2(n^2-2^2)+…+n(n^2-n^2)=a 2020-12-23 …