早教吧 育儿知识 作业答案 考试题库 百科 知识分享

类比求1^3+2^3+3^3+…+n^3的值的过程

题目详情
类比 求1^3+2^3+3^3+…+n^3的值的过程
▼优质解答
答案和解析
第二题:证明1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2=[n(n+1)/2]^2=(1+2+3+...+n)^2
(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1
2^4-1^4=4*1^3+6*1^2+4*1+1
3^4-2^4=4*2^3+6*2^2+4*2+1
4^4-3^4=4*3^3+6*3^2+4*3+1
.
(n+1)^4-n^4=4*n^3+6*n^2+4*n+1
各式相加有
(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n
4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2
复制来的你看看