早教吧作业答案频道 -->其他-->
抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=
题目详情
抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.

(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.

(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
▼优质解答
答案和解析
(1)∵抛物线y=(x-3)(x+1)与x轴交于A,B两点(点A在点B左侧),
∴当y=0时,(x-3)(x+1)=0,
解得x=3或-1,
∴点B的坐标为(3,0).
∵y=(x-3)(x+1)=x2-2x-3=(x-1)2-4,
∴顶点D的坐标为(1,-4);
(2)①如右图.
∵抛物线y=(x-3)(x+1)=x2-2x-3与与y轴交于点C,
∴C点坐标为(0,-3).
∵对称轴为直线x=1,
∴点E的坐标为(1,0).
连接BC,过点C作CH⊥DE于H,则H点坐标为(1,-3),
∴CH=DH=1,
∴∠CDH=∠BCO=∠BCH=45°,
∴CD=
,CB=3
,△BCD为直角三角形.
分别延长PC、DC,与x轴相交于点Q,R.
∵∠BDE=∠DCP=∠QCR,
∠CDB=∠CDE+∠BDE=45°+∠DCP,
∠QCO=∠RCO+∠QCR=45°+∠DCP,
∴∠CDB=∠QCO,
∴△BCD∽△QOC,
∴
=
=
,
∴OQ=3OC=9,即Q(-9,0).
∴直线CQ的解析式为y=-
x-3,
直线BD的解析式为y=2x-6.
由方程组
,解得
.
∴点P的坐标为(
,-
);
②(Ⅰ)当点M在对称轴右侧时.
若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
=
=
,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=∠DCF=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
a,
∴MF=MN+NF=3a,
∴MG=FG=
a,
∴CG=FG-FC=
a,
∴M(
a,-3+
a).
代入抛物线y=(x-3)(x+1),解得a=
,
∴M(
,-
);
若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
=
=
,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
a,
∴MF=MN-NF=a,
∴MG=FG=
a,
∴CG=FG+FC=
a,
∴M(
a,-3+
a).
代入抛物线y=(x-3)(x+1),解得a=5
,
∴M(5,12);
(Ⅱ)当点M在对称轴左侧时.
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
而抛物线左侧任意一点K,都有∠KCN<45°,
∴点M不存在.
综上可知,点M坐标为(
,-
)或(5,12).
∴当y=0时,(x-3)(x+1)=0,
解得x=3或-1,
∴点B的坐标为(3,0).
∵y=(x-3)(x+1)=x2-2x-3=(x-1)2-4,
∴顶点D的坐标为(1,-4);

∵抛物线y=(x-3)(x+1)=x2-2x-3与与y轴交于点C,
∴C点坐标为(0,-3).
∵对称轴为直线x=1,
∴点E的坐标为(1,0).
连接BC,过点C作CH⊥DE于H,则H点坐标为(1,-3),
∴CH=DH=1,
∴∠CDH=∠BCO=∠BCH=45°,
∴CD=
2 |
2 |
分别延长PC、DC,与x轴相交于点Q,R.
∵∠BDE=∠DCP=∠QCR,
∠CDB=∠CDE+∠BDE=45°+∠DCP,
∠QCO=∠RCO+∠QCR=45°+∠DCP,
∴∠CDB=∠QCO,
∴△BCD∽△QOC,
∴
OC |
OQ |
CD |
CB |
1 |
3 |
∴OQ=3OC=9,即Q(-9,0).
∴直线CQ的解析式为y=-
1 |
3 |
直线BD的解析式为y=2x-6.
由方程组
|
|
∴点P的坐标为(
9 |
7 |
24 |
7 |

若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
CN |
MN |
BE |
DE |
1 |
2 |
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=∠DCF=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
2 |
∴MF=MN+NF=3a,
∴MG=FG=
3
| ||
2 |
∴CG=FG-FC=
| ||
2 |
∴M(
3
| ||
2 |
| ||
2 |
代入抛物线y=(x-3)(x+1),解得a=
7
| ||
9 |
∴M(
7 |
3 |
20 |
9 |

∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴
CN |
MN |
BE |
DE |
1 |
2 |
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=
2 |
∴MF=MN-NF=a,
∴MG=FG=
| ||
2 |
∴CG=FG+FC=
3
| ||
2 |
∴M(
| ||
2 |
3
| ||
2 |
代入抛物线y=(x-3)(x+1),解得a=5
2 |
∴M(5,12);
(Ⅱ)当点M在对称轴左侧时.
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
而抛物线左侧任意一点K,都有∠KCN<45°,
∴点M不存在.
综上可知,点M坐标为(
7 |
3 |
20 |
9 |
看了 抛物线y=(x-3)(x+1...的网友还看了以下:
抛物线..抛物线C1:y=-X^2+2mx+n(m.n为常数,且m不=0,n>0)的顶点为A,与Y 2020-04-27 …
1.压力的作用点在物体的几何中心上还是在与其他物体的接触面上?2.画力的图示时,受力点在物体的几何 2020-06-14 …
MAYA两个独立物品点焊接.我建了两个BOX,要将他们合成连接成1个.我选择一物体上的点靠近另一物 2020-06-29 …
如图是某物质加热时温度随时间变化的图象.下列对图象的分析正确的是()A.该物质一定是晶体B.T2一 2020-07-06 …
已知开口向下的抛物线与x轴交于M、N两点(点N在点M的右侧),并且M和N两点的横坐标分别是方程的两 2020-07-20 …
(2011•江苏模拟)斜面上有P、R、S、T四个点,如图所示,PR=RS=ST,从P点正上方的点以 2020-07-21 …
如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕 2020-07-30 …
如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0)、B(3,0)、C(0,-3)三点 2020-08-01 …
下列行为中属于动物对植物生活产生消极作用的是()A.许多昆虫能为绿色开花植物传粉B.动物的皮毛能粘附 2020-12-25 …
抛物线y=1/3x^2+4x+9,对称轴为-6,点D(-6,-3)为抛物线顶点,点N坐标为(-6,6 2020-12-31 …