早教吧作业答案频道 -->数学-->
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^(n-1)与a(n+1)=pan-pt对任意正整数n都成立;数列{bn}为等差数列(1)求常数p,r,t,并写出数列{an}的通项公式(2)若干{bn}满足条件:1.b1为
题目详情
已知数列{an}的首项a1=1且存在常数p,r,t(其中r≠0),使得an+a(n+1)=r·2^(n-1)与a(n+1)=pan-pt对任意正整数
n都成立;数列{bn}为等差数列
(1)求常数p,r,t,并写出数列{an}的通项公式
(2)若干{bn}满足条件:1.b1为正整数;2.公差为1;3.项数为m(m为常数);4.2(1+1/b1)(1+1/b2)(1+1/b3)…(1+1/bm)=log2am,试求所有满足条件的m值
(3)如果数列{an}与数列{bn}没有公共项,数列{an}与{bn}的所有项按从小到大的顺序排列成;1,c2,c3,c4,4,…,且1,c2,c3,c4成等比数列,试求满足条件的所有数列{bn}的通项公式
n都成立;数列{bn}为等差数列
(1)求常数p,r,t,并写出数列{an}的通项公式
(2)若干{bn}满足条件:1.b1为正整数;2.公差为1;3.项数为m(m为常数);4.2(1+1/b1)(1+1/b2)(1+1/b3)…(1+1/bm)=log2am,试求所有满足条件的m值
(3)如果数列{an}与数列{bn}没有公共项,数列{an}与{bn}的所有项按从小到大的顺序排列成;1,c2,c3,c4,4,…,且1,c2,c3,c4成等比数列,试求满足条件的所有数列{bn}的通项公式
▼优质解答
答案和解析
(1)a(n+1)+an=r*2^(n-1) 1
a(n+1)-p*an=p*t 2
a1=1
想要求出p,r,t,只需要分别求出两个数列的通项,使其对应参数相等即可
对于数列1:
假定a(n+1)+an=r(m*2^(n+1)+m*2^n)
则3*m=1/2,m=1/6
a(n+1)-(r/6)*2^(n+1)=(-1)(an-(r/6)*2^n)
a(n)=(-1)^(n-1)(a1-r/3)+(r/6)*2^n
对于数列2:
假定a(n+1)-p*an=p*(k*t-pk*t)
则k=1/(1-p),
a(n+1)-p*t/(1-p)=p*(an-p*t/(1-p))
an=p^(n-1)(a1-p*t/(1-p))+p*t/(1-p)
比较两式,由于r≠0,则数列2常数项必须为0
根据通项,p≠0,得出t=0,可进一步推出p=2,r=3
代入得到,an=2^(n-1)
(2)log2am=m-1,2(1+1/b1)(1+1/b2)(1+1/b3)…(1+1/bm)=b2/b1xb3/b2x.
(1+bm)/bm=2(1+bm)/b1,bm=b1+(m-1)x1,所以2(1+bm)/b1=2(1+m/b1)=m-1,即2m/(m-3)=b1,
b1>2,m>3,当b1>8时,m<4,又m>3,故m不为整数,所以b1<=8,对2 得m的整数值为4,5,6,9.故所有满足条件的m值为4,5,6,9.
a(n+1)-p*an=p*t 2
a1=1
想要求出p,r,t,只需要分别求出两个数列的通项,使其对应参数相等即可
对于数列1:
假定a(n+1)+an=r(m*2^(n+1)+m*2^n)
则3*m=1/2,m=1/6
a(n+1)-(r/6)*2^(n+1)=(-1)(an-(r/6)*2^n)
a(n)=(-1)^(n-1)(a1-r/3)+(r/6)*2^n
对于数列2:
假定a(n+1)-p*an=p*(k*t-pk*t)
则k=1/(1-p),
a(n+1)-p*t/(1-p)=p*(an-p*t/(1-p))
an=p^(n-1)(a1-p*t/(1-p))+p*t/(1-p)
比较两式,由于r≠0,则数列2常数项必须为0
根据通项,p≠0,得出t=0,可进一步推出p=2,r=3
代入得到,an=2^(n-1)
(2)log2am=m-1,2(1+1/b1)(1+1/b2)(1+1/b3)…(1+1/bm)=b2/b1xb3/b2x.
(1+bm)/bm=2(1+bm)/b1,bm=b1+(m-1)x1,所以2(1+bm)/b1=2(1+m/b1)=m-1,即2m/(m-3)=b1,
b1>2,m>3,当b1>8时,m<4,又m>3,故m不为整数,所以b1<=8,对2
看了 已知数列{an}的首项a1=...的网友还看了以下:
设函数f(x)=x2,g(x)=mlnx(m>0),已知f(x)与g(x)有且仅有一个公共点.(1 2020-05-17 …
线性代数设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m*n矩阵,则下列命题中正确的是(不定 2020-06-24 …
在n元方程组AX=0中,若秩R(A)=k且η1,η2,…,ηr是它的一个基础解系,则r= 2020-06-30 …
小明的爸爸存入了3年期的教育储蓄(3年教育储蓄的年利率为2.4%),到期后再将本息和自动转存3年期 2020-07-13 …
设a∈R,函数f(x)=x|x-a|+2x.(1)若a=2,求函数f(x)在区间[0,3]上的最大 2020-07-16 …
已知函数(1)求函数的定义域;(2)若存在a∈R,对任意,总存在唯一x0∈[-1,2],使得f(x 2020-07-20 …
已知函数f(x)=(log2x)^2-2log0.5x+1,g(x)=x^2-ax+1若存在a∈R 2020-07-22 …
已知函数f(x)=x|x-a|+2x,其中a∈R.(1)若函数f(x)在R上是增函数,求a的取值范 2020-07-22 …
关于齐次线性方程组的解的判断题设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,则下 2020-07-31 …
设集合A为X2-3X+2=0,B为X2+2(A+1)X+A2-5=0,若U=R,A交B的补集为A求A 2020-11-21 …