早教吧作业答案频道 -->其他-->
已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是:下面哪一个是符合
题目详情
已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,r>0).过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,且满足|AC|=|BD|的直线l只有三条的必要条件是:下面哪一个是符合条件的______.
(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
,4)
(4)r∈[
,+∞)
(1)r∈(0,1]
(2)r∈(1,2]
(3)r∈(
3 |
2 |
(4)r∈[
3 |
2 |
▼优质解答
答案和解析
①当l⊥x轴时,过x=1与抛物线交于(1,土2),与圆交于(1,土r),满足题设.
②当l不与x轴垂直时,设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=
,
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4,
∴4
=
,
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
故答案为:(4).
②当l不与x轴垂直时,设直线l:x=my+1,(1)
代入y2=4x,得y2-4my-4=0,
△=16(m2+1),
把(1)代入:(x-1)2+y2=r2得y2=
r2 |
m2+1 |
设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
∵|AC|=|BD|,
∴y1-y3=y2-y4,y1-y2=y3-y4,
∴4
m2+1 |
2r | ||
|
即r=2(m2+1)>2,
即r>2时,l仅有三条.
考查四个选项,只有D中的区间包含了(2,+∞)
故答案为:(4).
看了 已知抛物线M:y2=4x,圆...的网友还看了以下:
已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心直线L:x+2y-3=0上1求圆C标准方 2020-04-27 …
高中数学--圆的直线方程已知圆C:x^2+(y-1)^2=5,直线l:mx-y+1-m=0问:设直 2020-05-16 …
椭圆与圆位置关系圆O的方程x^2+y^2=2,直线l是椭圆x^2\2+y^2=1的左准线,A.B是 2020-05-17 …
直线与圆2(918:23:13)圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+( 2020-05-17 …
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
(1)若直线l过点(0,2),且与圆(2+x)2+(y-1)2=4相切,求直线l的方程;(2)设圆 2020-05-22 …
高一直线与圆的位置关系!1.过点P(-3,-4)作直线L,当L的斜率为何值时,(1)直线L将圆(X 2020-06-07 …
圆的切线割线方程若有一点A(x0,y0),圆(x-a)^2+(y-b)^2=r^2直线过A与圆相切 2020-07-22 …
(1/2)设抛物线C:x^2=2py的焦点为F,准线为l,A为C上一点,已知F为圆心,FA为半径的圆 2020-11-27 …
已知圆C的方程(x-1)^2+(y-1)^2=4,直线l:y=x+m,求档m为何值时,1直线平分圆2 2021-01-12 …