早教吧作业答案频道 -->数学-->
直线与圆2(918:23:13)圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.1.求证:直线L恒过定点2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
题目详情
直线与圆2 (9 18:23:13)
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
▼优质解答
答案和解析
(2m+1)x+(m+1)y-7m-4=0
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
看了 直线与圆2(918:23:1...的网友还看了以下:
(2)过点B作直线MN的平行线l,求直线l被圆N截得弦的长度如图,已知圆心坐标为M(根号3,1 ) 2020-05-13 …
已知椭圆E的焦点在X轴上,焦距为2√3,离心率为√3/2已知点A(0,1)和直线l;y=x+m,线 2020-05-15 …
应该不难郭双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,若∠PF1Q=45°,则双曲线 2020-05-16 …
下列判断中正确的是()A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平 2020-05-16 …
判断下列正确的是说明理由A.平分弦的直线垂直于弦B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直 2020-05-20 …
过点A(-1,m)B(m,6)的直线与直线x-2y+1=0垂直则m的值已知抛物线的顶点原点对称轴为 2020-06-15 …
椭圆C(x^2)/4+(y^2)/3=1若动弦AB为垂直于x轴的弦,直线l:x=4与x轴相交于点N 2020-06-30 …
直线平分弦所对的弧1、已知直线平分弦,且平分所对的弧(优弧和劣弧),求证:直线过圆心2、已知直线垂 2020-07-14 …
求正弦曲线y=sinx与余弦曲线y=cosx及直线X=0和直线X=π所围成区域的面积 2020-08-02 …
1.点p(x,y)在直线x+y+1=0上,求根号(a*2+b*2-2a-2b+2)最少值2.求过点A 2020-12-31 …