早教吧作业答案频道 -->数学-->
直线与圆2(918:23:13)圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.1.求证:直线L恒过定点2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
题目详情
直线与圆2 (9 18:23:13)
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0.
1.求证:直线L恒过定点
2.判断直线L被圆C截得的弦何时最长,最短?并求截得的弦长最短时m的值以及最短长度.
▼优质解答
答案和解析
(2m+1)x+(m+1)y-7m-4=0
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
(2x+y-7)m=4-x-y
若2x+y-7=4-x-y=0
则无论m取何值都成立
所以x=3,y=1
所以L恒过A(3,1)
圆心(1,2),半径r=5
圆心距=|(2m+1)+2(m+1)-7m-4|/√[(2m+1)^+(m+1)^2]
=|3m+1|/√(5m^2+6m+2)
则(弦长的一半)^2=r^2-圆心距^2
所以就是求圆心距^2的最大值
圆心距^2=a=(3m+1)^2/(5m^2+6m+2)
=(9m^2+6m+1)/(5m^2+6m+2)
5am^2+6am+2a=9m^2+6m+1
(5a-9)m^2+(6a-6)m+(2a-1)=0
这个方程有解必须
(6a-6)^2-4(5a-9)(2a-1)≥0
a^2-5a≤0
0≤a≤5
所以圆心距最大=√5
所以此时弦长的一半=2√5
所以弦长的最小值=4√5
把a=5代入(5a-9)m^2+(6a-6)m+(2a-1)=0
(4m+3)^2=0
m=-3/4
看了 直线与圆2(918:23:1...的网友还看了以下:
短周期元素X、Y、Z在元素周期表中的位置如下图所示,下列说法正确的是()A.X、Y、Z三种元素中, 2020-04-08 …
已知直线l:(2k+1)x+(k+1)y=7k+4(x属于R)和园(x-1)的平方+(y-2)的平 2020-04-26 …
如图为元素周期表中短周期主族非金属元素的一部分,下列说法不正确的是()A.W的原子序数可能是Y的两 2020-06-09 …
已知x,y是非零实数,则下列各式中不能恒成立的是()A.|x-y|≤|x|+|y|B.|x+y|≥ 2020-07-30 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
质点仅在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时速度的方向与x轴平行,则恒力F的方 2020-07-31 …
质点仅在恒力F的作用下,由O点运动到A点的轨迹如图所示,在A点时速度的方向与x轴平行,则恒力F的方 2020-07-31 …
y=ax^2(a≠0)y恒大于或等于的条件y恒大于或等于0的条件 2020-08-02 …
关于函数证明的问题1.设以T为周期的函数y=f(x)可导,而且limf'(x)存在,当x->+无穷大 2020-12-08 …