早教吧作业答案频道 -->数学-->
设f(x)连续,F(t)=∫∫∫(k)[x^2+f(x^2+y^2)]dxdydz,其中k:0
题目详情
▼优质解答
答案和解析
用柱坐标
F(t)=∫ ∫ ∫ (k)[x^2+f(x^2+y^2)]dxdydz
=∫ ∫ ∫ [r²cos²θ+f(r²)]rdzdrdθ
=∫[0--->2π]dθ ∫ [0--->t]dr∫[0--->h] [r²cos²θ+f(r²)]rdz
=h∫[0--->2π]dθ ∫[0--->t] [r²cos²θ+f(r²)]rdr
=h∫[0--->2π]dθ ∫[0--->t] r³cos²θdr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)∫[0--->2π] (1+cos2θ)dθ ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)(θ+(1/2)sin2θ) |[0--->2π] ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=πh∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
因此:F'(t)=πht³+2πh*t f(t²)
F(t)=∫ ∫ ∫ (k)[x^2+f(x^2+y^2)]dxdydz
=∫ ∫ ∫ [r²cos²θ+f(r²)]rdzdrdθ
=∫[0--->2π]dθ ∫ [0--->t]dr∫[0--->h] [r²cos²θ+f(r²)]rdz
=h∫[0--->2π]dθ ∫[0--->t] [r²cos²θ+f(r²)]rdr
=h∫[0--->2π]dθ ∫[0--->t] r³cos²θdr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)∫[0--->2π] (1+cos2θ)dθ ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=(h/2)(θ+(1/2)sin2θ) |[0--->2π] ∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
=πh∫[0--->t] r³dr+h∫[0--->2π]dθ ∫[0--->t] rf(r²)dr
因此:F'(t)=πht³+2πh*t f(t²)
看了设f(x)连续,F(t)=∫∫...的网友还看了以下:
问几个c问题1,设x=2.5,y=4.7,a=7,则x+a%3*(int)(x+y)%2/4=2, 2020-04-08 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
抛物线y=x^2-2x-3与x轴交与A,B两点,与y轴交与C点.设直线y=-x+3与y轴的交点抛物 2020-06-14 …
1,设z=e^X^2Y+Y-(Y-2)arccos1/x+y求Zx'(x,2)2,设Z=arcta 2020-06-18 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
写出下列函数的解析表达式.1.设函数y=f(x),当x<0时,f(x)=0;当x≧0时,f(x)= 2020-08-03 …
1已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若g(x) 2020-10-31 …
1.过圆x^2+y^2=1外一点A(2,0)做圆的割线,求割线被圆截得的弦的中点的轨迹方程.2.求L 2020-12-05 …
学关于函数已知函数f(x)(x属于R)满足f(f(x)-x^2+x)=f(x)-x^2+x1.若f( 2020-12-08 …
[求助]多元函数的转化设f(x+y,y/x)=x^2+y^2,求f(x,y)我做的是:令x+y=uy 2020-12-14 …