早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知边长为a的菱形ABCD中,∠A=30°,过AB边上一点P作PQ‖AC交BC于Q,作PR‖BD交AD于R,设AP=x,△PQR的面积为S,问P点在何处时,S的值最大?最大值是多少?

题目详情
已知边长为a的菱形ABCD中,∠A=30°,过AB边上一点P作PQ‖AC交BC于Q,作PR‖BD交AD于R,设AP=x,△PQR的面积为S,问P点在何处时,S的值最大?最大值是多少?
▼优质解答
答案和解析
因为
PR=2x*sin15
PQ=2(a-x)cos15
所以
S=PQ*PR/2=2x(a-x)*sin15*cos15
=x(a-x)sin(2*15)=x(a-x)/2
当 x=a/2 ,即P点在AB的中点时,
S=(a/2)^2*1/2=a^2/8 是最大值