早教吧作业答案频道 -->数学-->
已知点P是圆C:x^2+y^2-6x-8y+21=0上的一个动点,O为坐标原点,直线l1:x+y+1=0.(1)求OP的最大值与最小值;(2)求点P到直线l1的距离的最大值与最小值.(3)过点P作直线l1的平行线l2,求直线l1与l2的距离最小
题目详情
已知点P是圆C:x^2+y^2-6x-8y+21=0上的一个动点,O为坐标原点,直线l1:x+y+1=0.
(1)求OP的最大值与最小值;(2)求点P到直线l1的距离的最大值与最小值.(3)过点P作直线l1的平行线l2,求直线l1与l2的距离最小时l2的方程
(1)求OP的最大值与最小值;(2)求点P到直线l1的距离的最大值与最小值.(3)过点P作直线l1的平行线l2,求直线l1与l2的距离最小时l2的方程
▼优质解答
答案和解析
把圆C方程进行配方:﹙x-3﹚²+﹙y-4﹚²=2².所以圆心C﹙3,4﹚,半径r=2.OC的长度为5.
5-2=3.5+2=7.答:OP最小值为3,OP最大值为7.
圆心C到直线l1的距离为d=﹙|3+4+1|﹚÷√﹙1²+1²﹚=4√2.点P到直线l1的距离最大值为2+4√2.
最小值为4√2-2.
至于,求直线l2,方法很多.可以设为x+y+t=0,令它与圆相切,△=0,求出t来(一大一小,取小的).
也可以从C向l2作垂线,找出与圆的交点P,再引平行线.等等.方法多.
还可以求C到直线l1的距离,(已经求了),再减去半径2,就是平行线的距离PH.套一下平行线的距离公式就可以了.
我们用从C引垂线的老方法做一下.
直线l1的斜率为-1,垂线的斜率为+1,又过点C(3,4),所以我们可以写出此垂线的方程
y-4=1×(x-3).即y=x+1.它与圆联立,求出交点P.P(3±√2,4±√2),取小的值.(与直线l1近)
依然用点斜式,y-(4-√2)=-1×(x-(3-√2)),化简一下即可.
5-2=3.5+2=7.答:OP最小值为3,OP最大值为7.
圆心C到直线l1的距离为d=﹙|3+4+1|﹚÷√﹙1²+1²﹚=4√2.点P到直线l1的距离最大值为2+4√2.
最小值为4√2-2.
至于,求直线l2,方法很多.可以设为x+y+t=0,令它与圆相切,△=0,求出t来(一大一小,取小的).
也可以从C向l2作垂线,找出与圆的交点P,再引平行线.等等.方法多.
还可以求C到直线l1的距离,(已经求了),再减去半径2,就是平行线的距离PH.套一下平行线的距离公式就可以了.
我们用从C引垂线的老方法做一下.
直线l1的斜率为-1,垂线的斜率为+1,又过点C(3,4),所以我们可以写出此垂线的方程
y-4=1×(x-3).即y=x+1.它与圆联立,求出交点P.P(3±√2,4±√2),取小的值.(与直线l1近)
依然用点斜式,y-(4-√2)=-1×(x-(3-√2)),化简一下即可.
看了已知点P是圆C:x^2+y^2...的网友还看了以下:
已知直线y=kx+b经过点A(0,6),且平行与直线y=2x1.求该直线解析式2.如果这条直线经过 2020-04-27 …
第二象限内一点到x 轴的距离为m,到y轴的距离为n,则过该点的一条直线与过点(0,2)且与x轴平行 2020-05-16 …
求经过直线L1:3x+4y-5=0 L2:2x-3y+8=0的交点M,且满足下列条件的直线方程(1 2020-05-16 …
如图,在平面直角坐标系中,点A(12,0),K(4,0)过点A的直线y=kx-4交y轴于点N.过K 2020-06-14 …
已知点A(0,2)和B(0,-2)过点A的直线与过点B的直线交于点P,若直线PAPB,的斜率之积为 2020-06-23 …
己知某匀强磁场的磁感应强度为0.5T,在该磁场中有一面积0.02m的平方矩形线圈,线圈平面与磁场方 2020-07-08 …
..1.已知直线l过点A(1,2),B(-1,-5),求经过点P(3,2)且平行于直线l的直线的一 2020-07-24 …
英语翻译1.要使学生明确演示的目的、要求与过程,让他们知道要看什么、怎样看,需要考虑什么问题,主动、 2021-01-04 …
1过点P(-1,2)的直线l与x轴和y轴分别交与A,B两点.若点P恰为线段AB的中点,求直线l的斜率 2021-01-10 …
有3份等质量的小苏打:第1份直接与过量盐酸反应;第2份先加热,使其部分分解后,再与过量盐酸反应;第3 2021-02-09 …