早教吧作业答案频道 -->数学-->
在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
题目详情
在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.

(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
▼优质解答
答案和解析
(1)当点O在AC上时,OC为⊙O的半径,
∵BC⊥OC,且点C在⊙O上,
∴BC与⊙O相切.
∵⊙O与AB边相切于点P,
∴BC=BP,
∴∠BCP=∠BPC=
,
∵∠ACP+∠BCP=90°,
∴∠ACP=90°-∠BCP=90°-
=
∠B.
即2∠ACP=∠B;
(2)在△ABC中,∠ACB=90°,AB=
=10,
如图,当点O在CB上时,OC为⊙O的半径,
∵AC⊥OC,且点C在⊙O上,
∴AC与⊙O相切,
连接OP、AO,
∵⊙O与AB边相切于点P,
∴OP⊥AB,
设OC=x,则OP=x,OB=BC-OC=6-x,
∵AC=AP,
∴PB=AB-AP=2,
在△OPB中,∠OPB=90°,
根据勾股定理得:OP2+BP2=OB2,即x2+22=(6-x)2,
解得:x=
,
在△ACO中,∠ACO=90°,AC2+OC2=AO2,
∴AO=
=
.
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根据面积法得:CP=2×
=
,
由题意可知,当点P与点A重合时,CP最长,
综上,当点O在△ABC外时,
<CP≤8.

∵BC⊥OC,且点C在⊙O上,
∴BC与⊙O相切.
∵⊙O与AB边相切于点P,
∴BC=BP,
∴∠BCP=∠BPC=
180°-∠B |
2 |
∵∠ACP+∠BCP=90°,
∴∠ACP=90°-∠BCP=90°-
180°-∠B |
2 |
1 |
2 |
即2∠ACP=∠B;
(2)在△ABC中,∠ACB=90°,AB=
AC2+BC2 |
如图,当点O在CB上时,OC为⊙O的半径,
∵AC⊥OC,且点C在⊙O上,
∴AC与⊙O相切,
连接OP、AO,
∵⊙O与AB边相切于点P,
∴OP⊥AB,
设OC=x,则OP=x,OB=BC-OC=6-x,
∵AC=AP,
∴PB=AB-AP=2,
在△OPB中,∠OPB=90°,
根据勾股定理得:OP2+BP2=OB2,即x2+22=(6-x)2,
解得:x=
8 |
3 |
在△ACO中,∠ACO=90°,AC2+OC2=AO2,
∴AO=
AC2+OC2 |
8 |
3 |
10 |
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根据面积法得:CP=2×
AC•OC |
AO |
16
| ||
5 |
由题意可知,当点P与点A重合时,CP最长,
综上,当点O在△ABC外时,
8
| ||
5 |
看了 在△ABC中,∠ACB=90...的网友还看了以下:
长方体的长宽高分别为3x-2,3x+2,2x-3,求其表面积,并求出当x=2时此长方体长方体的长宽 2020-05-12 …
种群数量在K/2时,增长率和增长速率都是最大吗?当种群数量到K值时,增长率和增值速率都是0吗? 2020-05-16 …
现有如下一系列图形:当n=1时,长方形ABCD分为2个直角三角形,总计数出5条边.当n=2时,长方 2020-06-17 …
角度是29'2'28,斜长为150,求邻边长是? 2020-06-18 …
楼梯垂高3.2米,斜长5.15米,踏步高0.18米,踏步宽0.27米,宽1.6米,需要多少节梯,怎 2020-06-27 …
现有如下一系列图形:当n=1时,长方形ABCD分为2个直角三角形,总计数出5条边.当n=2时,长方 2020-07-17 …
怎样区分下列矿物1、石英2、斜长石3、滑石4、石膏 2020-07-21 …
为什么种群数量为k/2时,增长速率最大 2020-11-17 …
弹性力做功和弹性势能到底是k(x1-X2)^2/2还是kx1^2/2-kX2^2/2时间长了忘完了越 2020-11-27 …
在种群数量为K/2时,增长率的下降幅度等于死亡率的增加幅度我在很多资料中看到这样一段话"S型曲线的前 2020-11-27 …