早教吧作业答案频道 -->数学-->
在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
题目详情
在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.

(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.
▼优质解答
答案和解析
(1)当点O在AC上时,OC为⊙O的半径,
∵BC⊥OC,且点C在⊙O上,
∴BC与⊙O相切.
∵⊙O与AB边相切于点P,
∴BC=BP,
∴∠BCP=∠BPC=
,
∵∠ACP+∠BCP=90°,
∴∠ACP=90°-∠BCP=90°-
=
∠B.
即2∠ACP=∠B;
(2)在△ABC中,∠ACB=90°,AB=
=10,
如图,当点O在CB上时,OC为⊙O的半径,
∵AC⊥OC,且点C在⊙O上,
∴AC与⊙O相切,
连接OP、AO,
∵⊙O与AB边相切于点P,
∴OP⊥AB,
设OC=x,则OP=x,OB=BC-OC=6-x,
∵AC=AP,
∴PB=AB-AP=2,
在△OPB中,∠OPB=90°,
根据勾股定理得:OP2+BP2=OB2,即x2+22=(6-x)2,
解得:x=
,
在△ACO中,∠ACO=90°,AC2+OC2=AO2,
∴AO=
=
.
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根据面积法得:CP=2×
=
,
由题意可知,当点P与点A重合时,CP最长,
综上,当点O在△ABC外时,
<CP≤8.

∵BC⊥OC,且点C在⊙O上,
∴BC与⊙O相切.
∵⊙O与AB边相切于点P,
∴BC=BP,
∴∠BCP=∠BPC=
180°-∠B |
2 |
∵∠ACP+∠BCP=90°,
∴∠ACP=90°-∠BCP=90°-
180°-∠B |
2 |
1 |
2 |
即2∠ACP=∠B;
(2)在△ABC中,∠ACB=90°,AB=
AC2+BC2 |
如图,当点O在CB上时,OC为⊙O的半径,
∵AC⊥OC,且点C在⊙O上,
∴AC与⊙O相切,
连接OP、AO,
∵⊙O与AB边相切于点P,
∴OP⊥AB,
设OC=x,则OP=x,OB=BC-OC=6-x,
∵AC=AP,
∴PB=AB-AP=2,
在△OPB中,∠OPB=90°,
根据勾股定理得:OP2+BP2=OB2,即x2+22=(6-x)2,
解得:x=
8 |
3 |
在△ACO中,∠ACO=90°,AC2+OC2=AO2,
∴AO=
AC2+OC2 |
8 |
3 |
10 |
∵AC=AP,OC=OP,
∴AO垂直平分CP,
∴根据面积法得:CP=2×
AC•OC |
AO |
16
| ||
5 |
由题意可知,当点P与点A重合时,CP最长,
综上,当点O在△ABC外时,
8
| ||
5 |
看了 在△ABC中,∠ACB=90...的网友还看了以下:
在平行四边形ABCD中,∠A=π/3,边AB,AD的长分别为4,2,若M,N分别是边BC,CD上的 2020-05-13 …
已知:RtΔABC中,∠A为直角,AD⊥BC于D,在线段AD反向延长线上取一点E,连接BE,并作C 2020-06-06 …
如图,为了求河的宽度,在河对岸岸边任意取一点A,再在河这边沿河边取两点B、C,使得∠ABC=60° 2020-06-13 …
三元混合液萃取问题在A-B二元混合物中,溶质A的质量分数为0.4,取该混合物100kg和75kg的 2020-06-18 …
如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE取BC中点M,连AM 2020-07-22 …
数学平面几何问题两条平行直线l1和l2,在l1上取A,作AB垂直于l2交点为B,在l1上取C,连接 2020-08-02 …
1.已知AB两点之间距离为10CM,C是线段AB上的任意一点,则AC中点与BC中间距离是多少?2. 2020-08-03 …
.在△ABC中,A,B,C为三个内角,a,b,c,为三条边,π/3<C>π/2,且b/(a-b)=s 2020-10-31 …
如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转 2020-11-01 …
如图,在三角形ABC中,BA=BC=AC=a,在BC的延长线上取一点D,使CD=b,在BA的延长线上 2020-12-25 …