早教吧作业答案频道 -->数学-->
一道数学题,有赏AB⊥平面HCD,DE⊥平面HCD,AC=AD=CD=DE=2,AB=1,F、G分别是CE、CD的中点.求证:(1)BF ⊥平面CDE; (2)求平面HCD与平面HCE所成的二面角的大小.
题目详情
一道数学题,有赏
AB⊥平面HCD,DE⊥平面HCD,AC=AD=CD=DE=2,AB=1,F、G分别是CE、CD的中点.求证:(1)BF ⊥平面CDE; (2)求平面HCD与平面HCE所成的二面角的大小.
AB⊥平面HCD,DE⊥平面HCD,AC=AD=CD=DE=2,AB=1,F、G分别是CE、CD的中点.求证:(1)BF ⊥平面CDE; (2)求平面HCD与平面HCE所成的二面角的大小.
▼优质解答
答案和解析
已知如图,在多面体ABCDEF中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
(1)求证:BF⊥平面CDE;
(2)求多面体ABCDE的体积;
(3)求平面BCE与平面ACD所成锐二面角的大小
19.(1)证明:取CD中点G,连AG、GF,则AG⊥CD,GF‖DE,GF= DE.
∵DE⊥面ACD,∴面ACD⊥面CDE.
∴AG⊥面CDE.又AB⊥面ACD,DE⊥面ACD.
∴AB‖DE,且AB= DE.
∴AB‖GF且AB=GF,四边形AGFB为平行四边形.
∴BF‖AG.∴BF⊥平面CDE.4分
连BD,则所求体积 = 8分
延长EB与DA交于H,连CH,则CH为所求二面角的棱.
∵F为CE中点,∴HC‖BF.∴HC⊥平面CDE.
∴∠ECD即为面BCE与面ACD所成二面角的平面角,且∠ECD=45°.12分
(1)求证:BF⊥平面CDE;
(2)求多面体ABCDE的体积;
(3)求平面BCE与平面ACD所成锐二面角的大小
19.(1)证明:取CD中点G,连AG、GF,则AG⊥CD,GF‖DE,GF= DE.
∵DE⊥面ACD,∴面ACD⊥面CDE.
∴AG⊥面CDE.又AB⊥面ACD,DE⊥面ACD.
∴AB‖DE,且AB= DE.
∴AB‖GF且AB=GF,四边形AGFB为平行四边形.
∴BF‖AG.∴BF⊥平面CDE.4分
连BD,则所求体积 = 8分
延长EB与DA交于H,连CH,则CH为所求二面角的棱.
∵F为CE中点,∴HC‖BF.∴HC⊥平面CDE.
∴∠ECD即为面BCE与面ACD所成二面角的平面角,且∠ECD=45°.12分
看了 一道数学题,有赏AB⊥平面H...的网友还看了以下:
数列{an}满足a1=a,a(n+1)=c×an+1-c,n为正整数,c和a为实数,且c不等于0.( 2020-03-31 …
已知a,b,c均为正数,且a+b+2c=1,则1\a+b+1\c的最小值是最后是a+b分之一加上c 2020-04-06 …
已知a,1,c成等差数列,且a^2,1,c^2成等比数列,则log((a+c),(a^2+c^2) 2020-04-26 …
一道应该挺简单的数学题.函数f(x)=3ax-2a+1在〔-1,1〕上存在一个零点,则a的取值范围 2020-05-16 …
一道较难数学题已知a+b+c=abc求证a(1-2b)(1-2c)+b(1-2a)(1-2c)+c 2020-07-23 …
一道不等式题设a,b,c∈R,且c≠0,求证(a+b)^≤(1+c^)a^(1+1/c^)b^ 2020-07-30 …
化简的题1.B∠A∠0∠1∠C("∠"为小于符号)|A|=|B|化简|A|÷A+|B|÷B+|C| 2020-08-01 …
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数 2020-08-01 …
组合数学递推关系看不懂...下了好几份课件,看了很久依然看不懂怎么由特征根方程求得a(n)通项公式 2020-08-01 …
如图所示是氢原子能级图的一部分,A、B、C分别表示原子在三种跃迁过程中辐射的光子,它们的能量和波长分 2020-11-25 …