早教吧作业答案频道 -->数学-->
等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列an的通项公式(2)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
题目详情
等比数列an的各项均为正数,(2a4),(a3),(4a5)成等差数列,且a3=2a2^2:(1)求数列an的)求数列an的通项公式(2
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
)求数列an的通项公式(2)设bn=[(2n+5)/(2n+1)(2n+3)]an求数列bn的前n项和sn
▼优质解答
答案和解析
等比数列an的各项均为正数
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
an>0
a1≠0,公比q>0
(2a4),(a3),(4a5)成等差数列
2a3=2a4+4a5
2a1*q^2=2a1*q^3+4a1*q^4
解得
q=1/2或q=-1(舍去)
a3=2a2^2
a1*q^2=2a1^2*q^2
解得
a1=1/2
数列an的通项公式
an=2^(-n)
求数列bn的前n项和sn
用列项求和法求解
bn=[(2n+5)/(2n+1)(2n+3)]an
bn=[2/(2n+1)-1/(2n+3)]*2^(-2)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
b1=1/3-1/5*2^(-1)
b2=1/5*2^(-1)-1/7*2^(-2)
b3=1/7*2^(-2)-1/9*2^(-3)
…………………
bn-1=1/(2n-1)*2^(2-n)-1/(2n+1)*2^(1-n)
bn=1/(2n+1)*2^(1-n)-1/(2n+3)*2^(-n)
累加得
sn=1/3-1/(2n+3)*2^(-n)
解毕
看了 等比数列an的各项均为正数,...的网友还看了以下:
关于等比数列的问题{bn}是等比数列,且{bn}>0(n∈N*)此处{bn}>0的含义?若{an} 2020-04-27 …
数学公式:1+n+n的平方+n的立方一直加下去.额,高中的知识都还给老师了.n是正数哈大于1的正数 2020-05-13 …
已知集合M={m|=k/4+1/4,k∈z},n={n=k/2+1/4,k∈z},则集合M,N的正 2020-05-16 …
不等式与极值问题:若a>b>c,n∈N*,且若a>b>c,n∈N*,且(a-b)分之一+(b-c) 2020-06-07 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
n×n个方格图案中的正方形个数表示为---?2×2个方格有5个正方形,3×3有14个,4×4有30 2020-07-17 …
n×n个方格图案中的正方形个数表示为---?2×2个方格有5个正方形,3×3有14个,4×4有30 2020-07-17 …
设函数f1(x)=112x4+aex(其中a是非零常数,e是自然对数的底),记fn(x)=fn-1 2020-08-02 …
已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的15.(1)求n的值;(2)求展开 2020-08-03 …
在行距和列距都是1的n*n方格网中,连接任意两个格点,得到长度不同的线段.(1)当n=1,2,3,4 2020-11-01 …