早教吧作业答案频道 -->其他-->
(2014•南宁)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证
题目详情
(2014•南宁)如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求
的长.

(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求
![]() |
AE |

▼优质解答
答案和解析
(1)BE=FH.证明:∵∠AEF=90°,∠ABC=90°,∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,∴∠HEF=∠BAE,在△ABE和△EHF中,∠FHE=EBA∠HEF=BAEAE=EF,∴△ABE≌△EHF(AAS)∴BE=FH.(2)由(1)得BE=FH,AB=EH...
看了(2014•南宁)如图1,四边...的网友还看了以下:
已知曲线C:f(x)=Inx+x^2上一点P(x0.f(x0),其中X0属于Z,且曲线C在点P处的 2020-04-27 …
曲线与方程辨析!已知:"曲线C上的点的坐标都是方程F(x,y)=0的解”,则下列命题正确的有:A. 2020-05-15 …
曲线c上的点的坐标都是方程f(x,y)=0的解且以方程f(x,y)=0的解为坐标的点都是曲线c上的 2020-06-14 …
懂高数的进求以Z轴为旋转轴以YOZ坐标面上的曲线C=f(y,z)=0为母线的旋转曲面的方程 2020-06-14 …
若曲线C上的点的坐标都是方程f(x,y)=0的解,则下面判断正确的是()A.曲线C的方程是f(x, 2020-07-21 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
抛物线y²=2px(p>0),F为焦点,则P表示(A)F到准线距离(B)F到准线的距离为1/2(C 2020-07-31 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
(1/2)设抛物线C:x^2=2py的焦点为F,准线为l,A为C上一点,已知F为圆心,FA为半径的圆 2020-11-27 …
设f(x)在(a,b)上有连续的三阶导数,若有c属于(a,b)使得f``(x)=0且,f```(x) 2021-02-01 …