早教吧作业答案频道 -->数学-->
(2013•淄博一模)在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.(Ⅰ)求证:BD⊥MC;(Ⅱ)在线段AB是否存在点E,使得AP∥平面NEC,若存在,说
题目详情

(Ⅰ)求证:BD⊥MC;
(Ⅱ)在线段AB是否存在点E,使得AP∥平面NEC,若存在,说明其位置,并加以证明;若不存在,请说明理由.
▼优质解答
答案和解析
(Ⅰ)因为四边形ABCD是菱形,所以BD⊥AC,
又ADNM是矩形,平面ADNM⊥平面ABCD,所以MA⊥平面ABCD,
所以MA⊥BD,又因为AC∩MA=A,由线面垂直的判定可得BD⊥平面AMC
又因为AC⊂平面AMC,所以BD⊥MC;
(2)当E为线段AB中点时,会使AP∥平面NEC,下面证明:
取NC中点F,连接EF,PF,可得AE∥CD,且AE=
CD,
由三角形的中位线可知,PF∥CD,且PF=
CD,
故可得AE∥PF,且AE=PF,即四边形AEPF为平行四边形,
故可得AP∥EF,又AP⊄平面NEC,EF⊂平面NEC,
所以AP∥平面NEC,
故当E为线段AB中点时,会使AP∥平面NEC
又ADNM是矩形,平面ADNM⊥平面ABCD,所以MA⊥平面ABCD,
所以MA⊥BD,又因为AC∩MA=A,由线面垂直的判定可得BD⊥平面AMC
又因为AC⊂平面AMC,所以BD⊥MC;
(2)当E为线段AB中点时,会使AP∥平面NEC,下面证明:
取NC中点F,连接EF,PF,可得AE∥CD,且AE=
1 |
2 |
由三角形的中位线可知,PF∥CD,且PF=
1 |
2 |
故可得AE∥PF,且AE=PF,即四边形AEPF为平行四边形,
故可得AP∥EF,又AP⊄平面NEC,EF⊂平面NEC,
所以AP∥平面NEC,
故当E为线段AB中点时,会使AP∥平面NEC
看了(2013•淄博一模)在如图所...的网友还看了以下:
1、设ABCD为自然数,且a^2+b^2=c^2+d^2,证:a+b+c+d为合数2、若在三角形中 2020-05-14 …
数学题!1.已知x,y,z均不为0,并且x∧2+4y∧2+9z∧2=x∧3+2y∧3+3z∧3=x 2020-06-11 …
下列卤化物在浓的KOH醇溶液中脱卤化氢的反应速度最快的是?选项为:a)1-溴戊烷b)2-溴戊烷c) 2020-06-28 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
(c-d)^2=c^2+d^2?如题就是(c-d)2次方是不是等于c2次方+d2次方? 2020-07-09 …
1)设a=19^96,b=96^19,c=199^6,d=6^199,则此四数按从小到大的顺序排列 2020-07-18 …
要求质量拜托了!钱随便开.前四题选择,后几道填空1.函数f(x)=sinx-|sinx|的值域为? 2020-07-23 …
C语言问题#includevoidmain(){inta=3,C语言问题#includevoidm 2020-07-23 …
几道数学填空题1.(a-b+c-d)^2-(a+b-c+d)^2=2.(x-3y)(x+3y)(x^ 2020-10-31 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …