(2014•宿迁一模)已知函数f(x)=x3+52x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=-2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f
(2014•宿迁一模)已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.
(1)当a=-2时,求函数f(x)的单调减区间;
(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.
答案和解析
(1)当a=-2时,函数f(x)=x
3+
x2-2x+b
则f′(x)=3x2+5x-2=(3x-1)(x+2)
令f′(x)<0,解得-2<x<,
所以f(x)的单调递减区间为(-2,);
(2)函数f(x)的导函数为由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,
则 | x3+x2+(a−1)x+b=0 | 3x2+5x+a=0 |
| |
即x3+x2+(-3x2-5x-1)x+b=0存在唯一的实数根x0,
故b=2x3+x2+x存在唯一的实数根x0,
令y=2x3+x2+x,则y′=6x2+5x+1=(2x+1)(3x+1)=0,故x=-或x=-,
则函数y=2x3+x2+x在(-∞,−),(-,+∞)上是增函数,在(−,-)上是减函数,
由于x=-时,y=-;x=-时,y=-;
故实数b的取值范围为:(-∞,-)∪(-1 |
8 |
作业帮用户
2017-10-06
举报
- 问题解析
- (1)先求原函数的导数,根据f′(x)<0求得的区间是单调减区间,即可;
(2)由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则 | x3+x2+(a−1)x+b=0 | 3x2+5x+a=0 |
| |
存在唯一的实数根x0,即b=2x3+x2+x存在唯一的实数根x0,就把问题转化为求函数最值问题;
(3)假设存在常数λ,依据曲线C在点A处的切线l1与曲线C交于另一点B,曲线C在点B处的切线l2,得到关于λ的方程,有解则存在,无解则不存在.
- 名师点评
-
- 本题考点:
- 利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.
-
- 考点点评:
- 本题以函数为载体,考查导数知识的运用,考查函数的单调性,考查曲线的切线,同时还考查了方程根的问题,一般要转化为函数的最值来解决.

扫描下载二维码
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞) 2020-06-20 …
已知函数f(x)=1/2ax2+2x,g(x)=Inx.是否存在正实数a,使得函数T(x)=g(x 2020-07-22 …
1.确定a,b的值,使函数(分段函数)f(x)=1/x·sin2x,(x<0);f(x)=a,x= 2020-07-22 …
函数的最值设函数f(x)的定义域为R,则下列四个命题:(1)若存在常数M,使得对于任意的x∈R,有 2020-07-25 …
证明原函数和反函数单调性相同已知y=f(x)在[a,b]上是增函数,求证y=f-1(x)在[f(a 2020-08-01 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …
设f(x)是以T为周期的周期函数,则f(x)的原函数也是周期函数的充要条件是什么?为什么?原函数已 2020-08-02 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
利用Roll定理构造函数设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1 2020-11-02 …
f(x)f(-x)-f(x)在函数中分别是什么意思f(x)怎样变换成f(-x)-f(x) 2021-01-07 …