(2012•泸州一模)数列{an},{bn}(n=1,2,3…)由下列条件确定:①a1<0,b1>0;②当k≥2时,ak与bk满足:当ak-1+bk-1≥0时,ak=ak-1,bk=ak−1+bk−12;当ak-1+bk-1<0时,ak=ak−1+bk−12,bk=bk-1.
(2012•泸州一模)数列{an},{bn}(n=1,2,3…)由下列条件确定:①a1<0,b1>0;②当k≥2时,ak与bk满足:当ak-1+bk-1≥0时,ak=ak-1,bk=;当ak-1+bk-1<0时,ak=,bk=bk-1.
(Ⅰ)若a1=-1,b1=1,求a2,a3,a4;
(Ⅱ)在数列{bn}中,若b1>b2>…>bs(s≥3,且s∈N*),用a1,b1表示bk(k∈[1,2,…,s])并求s |
 |
i=1 |
bi.
答案和解析
:(1)若a
1=-1,b
1=1,满足若a
1+b
1≥0,则 a
2=a
1=-1,b
2=
=0.
此时,a2+b2=-1<0,a3==-,b3=b2=0.
此时 a3+b3=-<0,a4==-.
综上可得,a2=-1,a3=-,a4=-.
(2)当≥0时,bk−ak=−ak−1=;
当<0时,bk−ak=bk−1−=,
所以无论哪种情况,都有bk−ak=.
因此,数列{bk-ak}是首相为b1-a1,公比为的等比数列,∴bn−an=(b1−a1)•()n−1.
由b1>b2>>bn(n≥2)时
利用等比数列的前n项和的公式证明:如果a不等于b,且a,b都不为0,则a^n+a^(n-1)b+a 2020-05-13 …
等比数列an的前n项和味Sn,已知对任意的n属于正整数,点(n,Sn)均在函数y=b^x+r(b> 2020-05-13 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
立方差公式的推广证明过程(1)a^n-b^n=(a-b)[a^(n-1)+a^(n-2)*b+.. 2020-07-11 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
关于乘方的问题计算1.a·a的m+1-a²·a的m次方(a·a^m+1-a^2·a^m)2.3b的 2020-07-30 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
1+2+3+4+5+.+n=0.5n^2+n1^2+2^2+3^2.+n^2=n(n+1)(2n+ 2020-08-03 …