早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2010•揭阳二模)已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n和为Sn.(1)求数列{bn}的通项公式;(2)设Tn=S2n-Sn,求证:Tn+1>Tn;(3)求证:对任意的n∈N*有1+n2≤S2n

题目详情
(2010•揭阳二模)已知数列{an}和{bn}满足a1=2,an-1=an(an+1-1),bn=an-1,数列{bn}的前n和为Sn
(1)求数列{bn}的通项公式;
(2)设Tn=S2n-Sn,求证:Tn+1>Tn
(3)求证:对任意的n∈N*1+
n
2
S2n≤
1
2
+n成立.
▼优质解答
答案和解析
(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1整理得bn-bn+1=bnbn+1,(1分)∵bn≠0否则an=1,与a1=2矛盾从而得1bn+1−1bn=1,(3分)∵b1=a1-1=1∴数列{1bn}是首项为1,公差为1的等差数列∴1bn...