早教吧作业答案频道 -->其他-->
(2010•汕头模拟)已知已知函数f(x)=x2x+1,数列{an}满足a1=1,an+1=f(an)(n∈N*).(Ⅰ)求证:数列{1an}是等差数列;(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
题目详情
(2010•汕头模拟)已知已知函数f(x)=
,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
x |
2x+1 |
(Ⅰ)求证:数列{
1 |
an |
(Ⅱ)记Sn=a1a2+a2a3+…+anan+1,试比较2Sn与1的大小.
▼优质解答
答案和解析
(Ⅰ)由已知得,an+1=
,
∴
=
+2,即
−
=2.
∴数列{
}是首项,公差d=2的等差数列.(6分)
(Ⅱ)由(Ⅰ)知
=1+(n−1)×2=2n−1,
∴an=
(n∈N*),(8分)
∴anan+1=
=
(
−
),(10分)
∴Sn=a1a2+a2a3++anan+1=
+
++
=
[(1−
)+(
−
)++(
−
)]=
(1−
)=
.(14分)
∴2Sn−1=
−1=
<0(n∈N*),∴2Sn<1.(16分)
an |
2an+1 |
∴
1 |
an+1 |
1 |
an |
1 |
an+1 |
1 |
an |
∴数列{
1 |
an |
(Ⅱ)由(Ⅰ)知
1 |
an |
∴an=
1 |
2n−1 |
∴anan+1=
1 |
(2n−1)(2n+1) |
1 |
2 |
1 |
2n−1 |
1 |
2n+1 |
∴Sn=a1a2+a2a3++anan+1=
1 |
1×3 |
1 |
3×5 |
1 |
(2n−1)(2n+1) |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n−1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
n |
2n+1 |
∴2Sn−1=
2n |
2n+1 |
−1 |
2n+1 |
看了(2010•汕头模拟)已知已知...的网友还看了以下:
(2014•天门模拟)已知数列{an}为等比数列,其前n项和为Sn,且满足16(a1+a4)+7= 2020-05-13 …
(2012•宁波模拟)已知数列{an}的前n项和为Sn,且2Sn=3an−2n,(n∈N*).(1 2020-05-13 …
(2014•岳阳模拟)设集合M={(x,y)|x∈R,y∈R},定义映射f:N*→M满足:对任意n 2020-05-13 …
(2010•沅江市模拟)已知数列{an}中,a1=1,且an=nn−1an-1+2n•3n-2(n 2020-07-09 …
(2008•武昌区模拟)数列{an}的各项均为正数,前n项和为Sn,对于n∈N*,总有an,sn, 2020-07-15 …
有关帧中继的问题对于网状拓扑结构,如果有N台机器相连,利用帧中继可以提供N(N-1)/2条虚拟连接 2020-07-17 …
下列各项中读音错误的一项是:()A.闷热mēn愤懑mèn分娩miǎn酩酊dǐngB.荒谬mìù脉脉m 2020-11-04 …
(2014•潍坊模拟)已知正项数列{an}的前n项和为Sn,a1=12,且满足2Sn+1=4Sn+1 2020-11-13 …
下列常用词语中字音有错误的一组是A.勒索lè勒紧lēi擂鼓léi闷热mēnB.扪心自问mén愤懑mè 2020-12-26 …
(2010•沈阳模拟)如图,它满足:(1)第n行首尾两数均为n;(2)图中的递推关系类似杨辉三角,则 2021-01-12 …