早教吧作业答案频道 -->其他-->
(2013•绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-ba;④3|a|+|c|<2|b|.其中正确的结论是(写出你认为正确的所有结论序号
题目详情

①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-
b |
a |
其中正确的结论是______(写出你认为正确的所有结论序号).
▼优质解答
答案和解析
∵抛物线开口向下,
∴a<0,
∴2a<0,
对称轴x=-
>1,-b<2a,
∴2a+b>0,故选项①正确;
∵-b<2a,
∴b>-2a>0>a,
令抛物线解析式为y=-
x2+bx-
,
此时a=c,欲使抛物线与x轴交点的横坐标分别为
和2,
则
=-
,
解得:b=
,
∴抛物线y=-
x2+
x-
,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,
对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),
故②选项错误;
∵-1<m<n<1,-2<m+n<2,
∴抛物线对称轴为:x=-
>1,
>2,m+n<
,故选项③正确;
当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,
∴3a+c>-2b,∴-3a-c<2b,
∵a<0,b>0,c<0(图象与y轴交于负半轴),
∴3|a|+|c|=-3a-c<2b=2|b|,故④选项正确.
故答案为:①③④.
∴a<0,
∴2a<0,
对称轴x=-
b |
2a |
∴2a+b>0,故选项①正确;
∵-b<2a,
∴b>-2a>0>a,
令抛物线解析式为y=-
1 |
2 |
1 |
2 |
此时a=c,欲使抛物线与x轴交点的横坐标分别为
1 |
2 |
则
| ||
2 |
b | ||
2×(−
|
解得:b=
5 |
4 |
∴抛物线y=-
1 |
2 |
5 |
4 |
1 |
2 |
对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),
故②选项错误;
∵-1<m<n<1,-2<m+n<2,
∴抛物线对称轴为:x=-
b |
2a |
−b |
a |
−b |
a |
当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,
∴3a+c>-2b,∴-3a-c<2b,
∵a<0,b>0,c<0(图象与y轴交于负半轴),
∴3|a|+|c|=-3a-c<2b=2|b|,故④选项正确.
故答案为:①③④.
看了(2013•绵阳)二次函数y=...的网友还看了以下:
已知m,n是有理数,下列结论正确的是[]已知m,n是有理数,下列结论正确的是[]A.m>n,则m2 2020-04-08 …
在△ABC中,AB=AC=a,BC=b,∠A=36°,记m=a+ba−b,n=(a+b)2ab,p 2020-05-13 …
设a>b>0,m>0,则b/ab+m/a+ma,b,m为有理数.设a>b>0,m>0则b/ab+m 2020-06-08 …
若logm2>logn2>0,则m,n满足的条件是()A.0<n<m<1B.0<m<n<1C.n> 2020-07-16 …
在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长为h,则()A.a>m 2020-07-20 …
6.①已知关于x的不等式(m-1)x>1-m的解集是x<-1,则m应满足什么条件?若上述不等式的解 2020-07-30 …
(1996•鄂州)硝酸钾的溶解度在80℃时为m克,20℃时为n克,20℃硝酸钾饱和溶液的质量百分比浓 2020-11-12 …
甲、乙两种物质的质量和体积关系如图所示,由图象可知A.ρ甲>ρ乙B.ρ甲<ρ乙C.若V甲=V乙,则m 2020-11-29 …
初一数学题已知m、n均为非零有理数,下列结论正确的是A若m不等于n,则m的平方不等于n的平方B若m的 2020-12-17 …
下列结论不正确的是()A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a< 2020-12-23 …