早教吧作业答案频道 -->其他-->
(2011•从化市一模)如图,△ABC是等腰直角三角形,AB=22,D为斜边BC上的一点(D与B、C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;(2)
题目详情
(2011•从化市一模)如图,△ABC是等腰直角三角形,AB=2
,D为斜边BC上的一点(D与B、C均不重合
),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.
(1)求证∠DCE=90°;
(2)当△DCE的面积为1.5时,求x的值;
(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x的取值;若不存在,请说明理由.
| 2 |
),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;
(2)当△DCE的面积为1.5时,求x的值;
(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x的取值;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵△ABD绕点A按逆时针旋转后得到△ACE,
∴△ACE≌△ABD,
∴∠ABD=∠ACE,(2分)
又∵△ABC是等腰直角三角形,且BC为斜边,
∴∠ABD+∠ACD=90°,(3分)
∴∠ACE+∠ACD=90°,
即:∠DCE=90°;(5分)
(2)∵AC=AB=2
,
∴BC2=AC2+AB2=(2
)2+(2
)2=16,
∴BC=4.(6分)
∵△ACE≌△ABD,∠DCE=90°,
∴CE=BD=x,而BC=4,
∴DC=4-x,
∴Rt△DCE的面积为:
DC•CE=
(4-x)x.
∴
(4-x)x=1.5,(8分)
即x2-4x+3=0.
解得x=1或x=3.(10分)
(3)△DCE存在最大值.(11分)
理由如下:设△DCE的面积为y,于是得y与x的函数关系式为:
y=
(4-x)x(0<x<4),(12分)
=-
(x-2)2+2,
∵a=-
<0,
∴当x=2时,函数y有最大值2.(13分)
又∵x满足关系式0<x<4,
故当x=2时,△DCE的最大面积为2.(14分)
∴△ACE≌△ABD,
∴∠ABD=∠ACE,(2分)
又∵△ABC是等腰直角三角形,且BC为斜边,
∴∠ABD+∠ACD=90°,(3分)

∴∠ACE+∠ACD=90°,
即:∠DCE=90°;(5分)
(2)∵AC=AB=2
| 2 |
∴BC2=AC2+AB2=(2
| 2 |
| 2 |
∴BC=4.(6分)
∵△ACE≌△ABD,∠DCE=90°,
∴CE=BD=x,而BC=4,
∴DC=4-x,
∴Rt△DCE的面积为:
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
即x2-4x+3=0.
解得x=1或x=3.(10分)
(3)△DCE存在最大值.(11分)
理由如下:设△DCE的面积为y,于是得y与x的函数关系式为:
y=
| 1 |
| 2 |
=-
| 1 |
| 2 |
∵a=-
| 1 |
| 2 |
∴当x=2时,函数y有最大值2.(13分)
又∵x满足关系式0<x<4,
故当x=2时,△DCE的最大面积为2.(14分)
看了(2011•从化市一模)如图,...的网友还看了以下:
下列关于糖皮质激素的描述,哪一项是错误的A:减轻炎症早期反应B:抑制免疫反应C:中和细菌内毒素D:抑 2020-03-30 …
用定义证明函数f(x)=(1\e^x-1)+(1\2)是奇函数急吖借问下2楼的解法f(-x)=1/ 2020-05-13 …
初三第一次月考作文假如你叫David,昨天你收到笔友王明的e-mail.得知他在英语学习方面有些麻 2020-05-14 …
线性代数问题A是n阶矩阵,A2-2A+E=0得到A=E对不?还是A=E是前式的充分非必要条件?帮忙 2020-06-12 …
氨基酸生成糖的途径是下列哪一种A:糖酵解B:糖原分解C:糖原生成D:糖原异生作用E:e正确答案:D 2020-06-23 …
下列哪一药物不具有抗幽门螺杆菌的作用?A:甲硝唑B:氟哌酸C:四环素D:羟氨苄青霉素(阿莫西林)E 2020-07-04 …
A,B,C,D,E五名同学猜测自己的数学成绩.A说:“如果我得优,那么B也得优.”B说:“如果我得优 2020-11-06 …
A,B,C,D,E5人应聘,5人有3人被录取,若5人被录用的机会相等,计算概率.1)D和E各得到一个 2020-12-22 …
如图,把三角形ABC的一条边延长一倍到D,把它的另一条边延长2倍到E,得到一个较大的三角形,那么,三 2021-01-02 …
高数反函数求导问题求函数y=(e^x-e^(-x))/(e^x+e^(-x))的反函数的导数x'(y 2021-01-23 …