早教吧作业答案频道 -->数学-->
已知,△ABC内接于O,∠BAC=60°,AE⊥BC,CF⊥AB.AE,CF相交于点H,点D为弧BC的中点,连接HD,AD.求证:△AHD为等腰三角形.
题目详情
已知,△ABC内接于 O,∠BAC=60°,AE⊥BC,CF⊥AB.AE,CF相交于点H,点D为弧BC的中点,连接HD,AD.求证:△AHD为等腰三角形.


▼优质解答
答案和解析
证明:连接AO、OD,过O作OM⊥AC,则AM=
AC,如图所示:
∵∠BAC=60°,CF⊥AB,
∴AF=
AC,
∴AM=AF,
∵AE⊥BC,CF⊥AB,
∴∠ABC+∠FHE=180°,
∵∠FHE+∠AHF=180°,
∴∠ABC=∠AHF,
∵∠AOM=
∠AOC=∠ABC,
∴∠AHF=∠AOM,
在△AMO与△AFH中,
,
∴△AMO≌△AFH(AAS),
∴AO=AH,
∵OD=OA,
∴AO=AH=OD,
∵点D为弧BC的中点,
∴OD⊥BC,
∵AE⊥BC,
∴AE∥OD,
∴四边形OAHD为平行四边形,
∵AO=AH,
∴四边形AHDO是菱形,
∴AH=HD,
∴△AHD为等腰三角形.
1 |
2 |

∵∠BAC=60°,CF⊥AB,
∴AF=
1 |
2 |
∴AM=AF,
∵AE⊥BC,CF⊥AB,
∴∠ABC+∠FHE=180°,
∵∠FHE+∠AHF=180°,
∴∠ABC=∠AHF,
∵∠AOM=
1 |
2 |
∴∠AHF=∠AOM,
在△AMO与△AFH中,
|
∴△AMO≌△AFH(AAS),
∴AO=AH,
∵OD=OA,
∴AO=AH=OD,
∵点D为弧BC的中点,
∴OD⊥BC,
∵AE⊥BC,
∴AE∥OD,
∴四边形OAHD为平行四边形,
∵AO=AH,
∴四边形AHDO是菱形,
∴AH=HD,
∴△AHD为等腰三角形.
看了已知,△ABC内接于O,∠BA...的网友还看了以下:
已知A、B、C、D、E五种物质之间存在以下转化关系.其中A、C两种物质的组成元素相同,且常温下是液 2020-04-08 …
设A,B均为n阶矩阵,其中B为可逆阵且(A+B)2=E,那么(E+AB-1)-1=()A.E+A- 2020-05-14 …
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则()A.λE-A=λE-BB.A与B有相同的 2020-05-14 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
2.已知A2+A+E=0,则矩阵A-1=()A.A+E\x05B.A-EC.-A-E\x05D.- 2020-07-09 …
已知:A、B、C、D、E都由两种元素组成,A、B、C、D、E含有同种元素,B是广泛应用的清洁能源; 2020-07-29 …
已知n阶矩阵A,B满足AAT=E,BBT=E,其中E是n阶单位矩阵,则()A.|A+B|=|A|+| 2020-11-01 …
已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则[]A.a⊥eB.a⊥(a 2020-11-02 …
据柯睿格(E.A.Kracke)对南宋两份进士题名录的研究,非官员家族的进士1148年占56.3%, 2020-12-22 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …