早教吧作业答案频道 -->其他-->
(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AM
题目详情
(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有( )
A.5个
B.4个
C.3个
D.2个
▼优质解答
答案和解析
∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=
PM,
同理,FP=FN=
NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
PM,FP=FN=
NP,OA=
AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
|
∴△APE≌△AME,故①正确;
∴PE=EM=
| 1 |
| 2 |
同理,FP=FN=
| 1 |
| 2 |
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
看了(2013•昆明)如图,在正方...的网友还看了以下:
如果向量a,b,c共面,b,c,d也共面,那么a,b,c,d是否共面?如果不一定共面,请举例说明浪 2020-05-13 …
关于几个逻辑学的问题,就解,最好有过程,1.我市有女排对A,B,C,D,E,F,G,P,Q,R,S 2020-05-17 …
调查某高中报考大学的情况如下,报A大学的不报B,报B大学的也报D,报C的就不报D,不报C的就不报B 2020-06-04 …
初三比例式计算.如题.已知a/b=c/d(bd不等于0).判断下列比例式是否成立.并说明理由.a- 2020-06-10 …
如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM 2020-06-23 …
如图,在三角形ABC中,AB=AC=5,BC=6,D,E分别是边AB,AC上的两个动点(D不与AB 2020-07-22 …
已知AC的长为定值,D不属于平面ABC,点M、N分别是ΔDAB和ΔDBC的重心.求证:无论B、D如 2020-07-30 …
这是不是欧拉定理?欧拉定理:△ABC的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI= 2020-08-02 …
4.已知A、B、C、D有下列关系,请推出A与B、B与D、A与D的外延关系,写出推导过程,并将A、B、 2020-11-07 …
物体的体积V和重量p关系时p=dv,d表示该物体的密度(1)如果d不变,p是不是v的函数它实际意义是 2021-01-27 …