早教吧作业答案频道 -->其他-->
(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AM
题目详情
(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有( )
A.5个
B.4个
C.3个
D.2个
▼优质解答
答案和解析
∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=
PM,
同理,FP=FN=
NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
PM,FP=FN=
NP,OA=
AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
|
∴△APE≌△AME,故①正确;
∴PE=EM=
| 1 |
| 2 |
同理,FP=FN=
| 1 |
| 2 |
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
看了(2013•昆明)如图,在正方...的网友还看了以下:
如图,OB是圆A的直径,A为圆心,OB=20.DP与圆相切于点D,DP垂直于PB,垂足为P,PB与 2020-04-26 …
垂直于同一个平面的两个平面什么情况会相交且不垂直?高一必修二的内容刚刚有道题目说平面a垂直平面b平 2020-05-13 …
中学生“网民”在网络交往中的正确态度是:()A.上网要遵守法律这一最基本的行为准则B.网络交往是虚 2020-05-14 …
三角形内部三线相交,交点有什么特点?三角形内部三条内角平分线交点,三条高的交点,三条中线的交点,三 2020-06-06 …
杂交水稻之父袁隆平在稻田中找到一株“野败”(雄性不育),培育出高产的杂交水稻.这株“野败”的产生是 2020-06-30 …
杂交水稻之父袁隆平在稻田中找到一株“野败”(雄性不育),培育出高产的杂交水稻.这株“野败”的产生是 2020-06-30 …
任意三角形的中心应该怎样找?外心是中垂线的交点,内心是角平分线的交点,垂心是高的交点,重心是中线的 2020-07-30 …
在我国,国有企业上交国家的利税占国家财政收入的60%以上,国有大中型企业又占国有企业上交利税的85% 2020-12-18 …
等腰直角三角形ABC,斜边BC,点D、E在AC、CA的延长线上,AE=CD,连DB,AM垂直BD于M 2020-12-25 …
如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k> 2021-01-11 …