早教吧作业答案频道 -->其他-->
(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AM
题目详情

①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有( )
A.5个
B.4个
C.3个
D.2个
▼优质解答
答案和解析
∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=
PM,
同理,FP=FN=
NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
PM,FP=FN=
NP,OA=
AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
|
∴△APE≌△AME,故①正确;
∴PE=EM=
1 |
2 |
同理,FP=FN=
1 |
2 |
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=
1 |
2 |
1 |
2 |
1 |
2 |
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正确.
∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;
∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P是AB的中点.故⑤正确.
故选B.
看了(2013•昆明)如图,在正方...的网友还看了以下:
如图,一次函数y=-12x+2分别交y轴,x轴于A,B两点,抛物线y=-x2+bx+c过A,B两点 2020-04-27 …
y=ax²+bx+c 过A(1 0)C(5 0) 和顶点B 直线y=kx+m过AB两点 它与坐标轴 2020-05-16 …
如图,直线y=kx+b分别交y轴、x轴于A(0、2)、B(4、0))两点,抛物线y=-x2+bx+ 2020-05-17 …
把直线y=-2x向上平移后得到直线AB,且直线AB经过直线AB的解析式是平移则x系数不变所以是y= 2020-05-22 …
1.求证:对于给定的等边三角形,三角形内任意一点到三边的距离和为定值2.在∠B的两边上分别取点A, 2020-06-06 …
如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点 2020-06-11 …
已知a,b为异面直线,则下列命题中正确的是()A.过a,b外一点P一定可以引一条与a,b都平行的直 2020-08-02 …
如图,已知:A(-2,-3),C(0,-1),B点与A点关于C点中心对称,抛物线y=ax2+bx+c 2020-11-04 …
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx 2021-01-11 …
已知A,B两点在抛物线C:x^2=4Y上,点M(0,4)满足向量MA=K向量BM.1)求证:向量已知 2021-02-05 …