早教吧作业答案频道 -->数学-->
在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A、点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1(1)如图①,
题目详情
在△ABC中,AB=AC,∠ABC=90°,D为AC中点,点P是线段AD上的一点,点P与点A、点D不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接A1B1、BB1
(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2.
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB′与AC相交于点Q.若AB=
,设AP=x,求y关于x的函数关系式.

(1)如图①,当0°<α<90°,在α角变化过程中,请证明∠PAA1=∠PBB2.
(2)如图②,直线AA1与直线PB、直线BB1分别交于点E,F.设∠ABP=β,当90°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;
(3)如图③,当α=90°时,点E、F与点B重合.直线A1B与直线PB相交于点M,直线BB′与AC相交于点Q.若AB=
2 |

▼优质解答
答案和解析
(1)∵将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,∴∠APA1=∠BPB1=α,AP=A1P,BP=B1P,∴∠AA1P=∠A1AP=180°-∠APA12=180°-α2,∠BB1P=∠B1BP=180°-∠BPB12=180°-α2,∴∠PA...
看了在△ABC中,AB=AC,∠A...的网友还看了以下:
一个很简单的微分中值定理运用题已知函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0) 2020-03-31 …
、设f(x)在[0,1]上连续,在(0,1)上可导,f(0)=f(1)=0,证明:对任意x0∈(0 2020-05-14 …
设函数f(x)在0,1上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为 2020-05-14 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
设f(x)在闭区间[0,1]连续,在(0,1)内可导且f(0)=0,f(1)=1/3求证:彐ξ设f 2020-06-23 …
高数证明题高数一道证明题设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1fxdx 2020-07-16 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
设当x属于0,1)时,f(x)=x^2,当x属于1,2时,f(x)=x,求H(x)=∫(0-->x) 2020-11-01 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …
证明:设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=f(1)=0,设F(x) 2020-12-28 …