早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^2=E,则称A为对合矩阵,设A,B都是n阶对合矩阵且|A|+|B|=0,试证明|A+B|=0
题目详情
若n阶矩阵A满足A^2=E,则称A为对合矩阵,设A,B都是n阶对合矩阵且|A|+|B|=0,试证明|A+B|=0
▼优质解答
答案和解析
解: 因为A,B为对合矩阵
所以 |A|^2=|B|^2=1 [ |A|=±1, |B|=±1 ]
再由 |A|+|B|=0 [ 得 |A|,|B| 必一正一负, 即有 |A||B|=-1]
得 |A|^2+|B|^2+2|A||B|=0
所以 |A||B|=-1.
所以 -|A+B|
= |A||A+B||B|
= |A(A+B)B|
= |AAB+ABB|
= |B+A|
= |A+B|
所以有 2|A+B| = 0
所以 |A+B| = 0.
所以 |A|^2=|B|^2=1 [ |A|=±1, |B|=±1 ]
再由 |A|+|B|=0 [ 得 |A|,|B| 必一正一负, 即有 |A||B|=-1]
得 |A|^2+|B|^2+2|A||B|=0
所以 |A||B|=-1.
所以 -|A+B|
= |A||A+B||B|
= |A(A+B)B|
= |AAB+ABB|
= |B+A|
= |A+B|
所以有 2|A+B| = 0
所以 |A+B| = 0.
看了若n阶矩阵A满足A^2=E,则...的网友还看了以下:
求教工程数学线性代数1若n阶矩阵A为正交矩阵,则A必为可逆矩阵且A-1=A'2若Rank(A)=n 2020-04-12 …
一个矩阵方程的计算问题下面字母都是表示矩阵A*B=Y其中A是未知n阶方阵,B是n*1阶矩阵Y也是n 2020-05-14 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A 2020-05-15 …
设A*,A^-1为阶方阵A的伴随阵、逆矩阵,则|A*A^-1|=设A*,A^-1为n阶方阵A的伴随 2020-06-18 …
设A和B是两个同阶矩阵,证明以下命题:设A和B是两个对称矩阵,则A和B之和与差必为对称矩阵 2020-06-18 …
设A为4阶矩阵,满足条件AAT=2E,|A|<0,其中E是4阶单位矩阵.求方阵A的伴随矩阵A*的一 2020-06-18 …
4阶矩阵求逆时,可不可以化为3阶矩阵求逆?比如下列4*4方阵求逆2021111302111222求 2020-07-12 …
A为三阶方阵,|A|=1/2,则|A^-1-A*|=如题,表达式叙述为“方阵A的逆矩阵减去方阵A的伴 2020-11-07 …
请高手帮忙做10道线性代数1:设A为n阶方阵,下列结论中不正确的是()(A)A+AT是对称阵(B)A 2020-11-18 …