早教吧作业答案频道 -->数学-->
(x+1)y"+y'=ln(x通解+1)
题目详情
(x+1)y"+y'=ln(x通解+1)
▼优质解答
答案和解析
令 z = y' 则 z' = y''
So (x + 1)y'' + y' = ln(x + 1)
--> (x + 1)z' + z = ln(x + 1)
--> (x + 1)z' + z(x + 1) = ln(x + 1)
--> [z(x + 1)]' = ln(x + 1)
--> z(x + 1) = ∫ ln(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ (x + 1 - 1)/(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ [1 - 1/(x + 1)] dx
--> z(x + 1) = xln(x + 1) - x + ln|x + 1| + C
--> z(x + 1) = - x + (x + 1)ln|x + 1| + C
--> z = (C - x)/(x + 1) + ln|x + 1|
--> y' = (C - x)/(x + 1) + ln|x + 1|
--> y' = C1*ln|x + 1| - 2x + xln|x + 1| + C2
So (x + 1)y'' + y' = ln(x + 1)
--> (x + 1)z' + z = ln(x + 1)
--> (x + 1)z' + z(x + 1) = ln(x + 1)
--> [z(x + 1)]' = ln(x + 1)
--> z(x + 1) = ∫ ln(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ (x + 1 - 1)/(x + 1) dx
--> z(x + 1) = xln(x + 1) - ∫ [1 - 1/(x + 1)] dx
--> z(x + 1) = xln(x + 1) - x + ln|x + 1| + C
--> z(x + 1) = - x + (x + 1)ln|x + 1| + C
--> z = (C - x)/(x + 1) + ln|x + 1|
--> y' = (C - x)/(x + 1) + ln|x + 1|
--> y' = C1*ln|x + 1| - 2x + xln|x + 1| + C2
看了(x+1)y"+y'=ln(x...的网友还看了以下:
已知f(x+y,y/x)=x2-y2,求f(x,y)解:f(x+y,y/x)=(x+y)(x-y) 2020-06-02 …
已知f(0)=1,f(x+y)-2f(x-y)=x(x-y)+2xy-1,求f(x)解法1:令y= 2020-06-05 …
m+4n=52m-n=1解方程1.m+4n=52m-n=12.3(x+y)-4(x-y)=4(二分 2020-06-06 …
当a为何值时,抛物线y=x²和圆x²+(y-a)²=1有且仅有2个不同的交点请看下列解法:由1.y 2020-06-11 …
方程组:3分之2(x-y)-4分之x+y=-1,6(x+y)-4(2x-y)=16求x和y的解方程 2020-08-01 …
(1)分解因式:5a(a+b)-1-b(2)分解因式:by(y-x)∧2n+b(x-y)∧2n+1 2020-08-01 …
关于一元一次不等式的练习题详细解答1.关于x的方程组{3x+y=k+1的解x.y满足x+3y=31 2020-08-03 …
解下列方程{x+y=9(1){(10y+x)-(10x+y)=9(2){(10x+y)-3(x+y) 2020-10-31 …
求方程的解求(x-y)/2-(x+y)/5=1,3(x-y)+2(x+y)=6的解,3x=5y,2x 2020-10-31 …
已知x,y∈R+,2x+y=1,求1/x+1/y的最小值解法错误原因恳请解释为什么错误,∵x,y∈R 2020-12-31 …