早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+bx+c交x轴于A(-1,0)、B两点,交y轴于点C(0,5),且过点D(1,8),M为其顶点.(1)求抛物线的解析式;(2)求△MCB的面积;(3)在抛物线上是否存在点P,使△PAB的
题目详情
如图,抛物线y=ax2+bx+c交x轴于A(-1,0)、B两点,交y轴于点C(0,5),且过点D(1,8),M为其顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积;
(3)在抛物线上是否存在点P,使△PAB的面积等于△MCB的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(1)求抛物线的解析式;
(2)求△MCB的面积;
(3)在抛物线上是否存在点P,使△PAB的面积等于△MCB的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵A(-1,0),C(0,5),D(1,8)三点在抛物线y=ax2+bx+c上,
∴
,
解方程组,得
,
故抛物线的解析式为y=-x2+4x+5;
(2)过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=
MN•OB.
∵y=-x2+4x+5=-(x-5)(x+1)=-(x-2)2+9,
∴M(2,9),B(5,0),
由B、C两点的坐标易求得直线BC的解析式为:y=-x+5,
当x=2时,y=-2+5=3,则N(2,3),
则MN=9-3=6,
则S△MCB=
×6×5=15;
(3)在抛物线上存在点P,使△PAB的面积等于△MCB的面积.理由如下:
∵A(-1,0),B(5,0),
∴AB=6,
∵△PAB的面积=△MCB的面积,
∴
×6×|yP|=15,
∴|yP|=5,yP=±5.
当yP=5时,-x2+4x+5=5,解得x1=0,x2=4;
当yP=-5时,-x2+4x+5=-5,解得x3=2+
,x4=2-
.
故在抛物线上存在点P1(0,5),P2(4,5),P3(2+
,-5),P3(2-
,-5),使△PAB的面积等于△MCB的面积.
∴
|
解方程组,得
|
故抛物线的解析式为y=-x2+4x+5;
(2)过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=| 1 |
| 2 |
∵y=-x2+4x+5=-(x-5)(x+1)=-(x-2)2+9,
∴M(2,9),B(5,0),
由B、C两点的坐标易求得直线BC的解析式为:y=-x+5,
当x=2时,y=-2+5=3,则N(2,3),
则MN=9-3=6,
则S△MCB=
| 1 |
| 2 |
(3)在抛物线上存在点P,使△PAB的面积等于△MCB的面积.理由如下:
∵A(-1,0),B(5,0),
∴AB=6,
∵△PAB的面积=△MCB的面积,
∴
| 1 |
| 2 |
∴|yP|=5,yP=±5.
当yP=5时,-x2+4x+5=5,解得x1=0,x2=4;
当yP=-5时,-x2+4x+5=-5,解得x3=2+
| 14 |
| 14 |
故在抛物线上存在点P1(0,5),P2(4,5),P3(2+
| 14 |
| 14 |
看了如图,抛物线y=ax2+bx+...的网友还看了以下:
a、b、c是不等于0的实数,且1\a+1\b=1,1\b+1\c=2,1\c+1\a=5求a2b2c 2020-03-30 …
数学指数式化简(字母均为正数)要详细过程在线等急!谢谢1>>(5/6)a^(1/3)*b(-2)* 2020-04-27 …
已知A={x丨丨x-a丨=4},B={1,2,b},是否存在实数a,使得对于任意实数b,都有A⊆B 2020-05-13 …
设矩阵A,B满足A=E(1,3)E(5(-2))BE(3,2(1/2)),则有A.B=E(1,3) 2020-06-28 …
matlab求二个矩阵对应元素不相等的个数例如,a=[1,2,3;4,5,6],b=[1,3,2; 2020-07-21 …
若实数a、b、c满足根号a+根号(b-1)+根号(c-2)=1/2(a+b+c),解这题里(a-2 2020-07-22 …
ab是实数,且0小于a小于等于1,0小于b小于等于1,求证:根号下(a^2+b^2)+根号下(a- 2020-08-01 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
一些因式分解的题~(1)(x^2+y^2)^2-(z^2-x^2)^2-(y^2+z^2)^2(2) 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …