早教吧作业答案频道 -->数学-->
x,y,z为有理数已知x、y、z为有理数,且(y-z)²+(z-x)²+(x-y)²=(z+y-2x)²+(z+x-2y)²+(x+y-2z)².求(yz+1)(zx+1)(xy+1)除以(x²+1)(y²+1)(z²+1)的值
题目详情
x,y,z为有理数
已知x、y、z为有理数,且(y-z)²+(z-x)²+(x-y)²=(z+y-2x)²+(z+x-2y)²+(x+y-2z)².求(yz+1)(zx+1)(xy+1)除以(x²+1)(y²+1)(z²+1)的值
已知x、y、z为有理数,且(y-z)²+(z-x)²+(x-y)²=(z+y-2x)²+(z+x-2y)²+(x+y-2z)².求(yz+1)(zx+1)(xy+1)除以(x²+1)(y²+1)(z²+1)的值
▼优质解答
答案和解析
(x+y-2z)^2+(y+z-2x)^2+(z+x-2y)^2
=((x-z)+(y-z))²+((y-x)+(z-x))²+((z-y)+(x-y))²
=(x-z)²+(y-z)²+2(x-z)(y-z)+(y-x)²+(z-x)²+2(y-x)(z-x)+(z-y)²+(x-y)²+2(z-y)(x-y)
=2(z-x)²+2(y-z)²+2(x-y)²+2(x-z)(y-z)+2(y-x)(z-x)+2(z-y)(x-y)
=(x-y)^2+(y-z)^2+(z-x)^2
所以
-((x-y)^2+(y-z)^2+(z-x)^2)=2(x-z)(y-z)+2(y-x)(z-x)+2(z-y)(x-y)
-2x²-2y²+2xy-2z²+2yz+2zx=2xy-2xz-2zy+2z²+2yz-2xy-2xz+2x²+2xz-2zy-2xy+2y²
-2x²-2y²+2xy-2z²+2yz+2zx=-2xz-2zy+2z²-2xy+2x²+2y²
4x²+4y²+4z²=4xy+4zy+4xz
即x²+y²+z²-xy-zy-xz=0
(1/2)(x²+y²-2xy+x²+z²-2xz+y²+z²-2zy)=0
(1/2)((x-y)²+(x-z)²+(y-z)²)=0
所以x=y=z
[(xy+1)(yz+1)(zx+1)]/ [(x^2+1)(y^2+1)(z^2+1)]
=(x²+1)(y²+1)(z²+1)/[(x^2+1)(y^2+1)(z^2+1)]
=1
=((x-z)+(y-z))²+((y-x)+(z-x))²+((z-y)+(x-y))²
=(x-z)²+(y-z)²+2(x-z)(y-z)+(y-x)²+(z-x)²+2(y-x)(z-x)+(z-y)²+(x-y)²+2(z-y)(x-y)
=2(z-x)²+2(y-z)²+2(x-y)²+2(x-z)(y-z)+2(y-x)(z-x)+2(z-y)(x-y)
=(x-y)^2+(y-z)^2+(z-x)^2
所以
-((x-y)^2+(y-z)^2+(z-x)^2)=2(x-z)(y-z)+2(y-x)(z-x)+2(z-y)(x-y)
-2x²-2y²+2xy-2z²+2yz+2zx=2xy-2xz-2zy+2z²+2yz-2xy-2xz+2x²+2xz-2zy-2xy+2y²
-2x²-2y²+2xy-2z²+2yz+2zx=-2xz-2zy+2z²-2xy+2x²+2y²
4x²+4y²+4z²=4xy+4zy+4xz
即x²+y²+z²-xy-zy-xz=0
(1/2)(x²+y²-2xy+x²+z²-2xz+y²+z²-2zy)=0
(1/2)((x-y)²+(x-z)²+(y-z)²)=0
所以x=y=z
[(xy+1)(yz+1)(zx+1)]/ [(x^2+1)(y^2+1)(z^2+1)]
=(x²+1)(y²+1)(z²+1)/[(x^2+1)(y^2+1)(z^2+1)]
=1
看了x,y,z为有理数已知x、y、...的网友还看了以下:
现有四个有理数:-1,-3,4,4,将这四个数(每个数用且只能用一次)进行加减乘除四则运算.求算式 2020-05-16 …
余式定理方面的题设多项式f(x)除以x-1,x²-2x+3余式分别为2,4x+6,则f(x)除以( 2020-06-28 …
对于数学中不全为0的理解,下面哪种理解是对的呢?理解1:部分为0,部分不为0,但不全为0理解2:除 2020-07-13 …
余试定理1以(x+1)^2除x^50+1之余式为2设f(x)为一多项式,若(x+1)*f(x)除以 2020-07-30 …
余式定理的問題1.當多項式f(x)除以x-3時,所得的餘數是3.當f(x)除以4x+1時,餘數為- 2020-07-30 …
0÷2=0理由?1楼的0只是不能做除数,OK?0确实不能除任何数但0可以除以非零实数请不要把"除"和 2020-11-04 …
寻人教版数学七年级上册知识点人教版七年级上册四章知识点:第一张,有理数1.1正书和负数1.2有理数1 2020-11-25 …
在数理统计中,除以n-1的方差是无偏估计.对于正态分布,除以n的方差是最大似然估计那么对于一般的分布 2021-01-02 …
两数相处的商是5.3,余数是0.3,如果被除数和除数都缩小10倍,它们的商和余数变不变()求理由?列 2021-01-16 …
一个负数总比—1下列说法正确的是()A、0除以任何数都得0;B、两个互为相反数的数相除商为—1;C、 2021-02-03 …