早教吧作业答案频道 -->数学-->
已知函数f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,若k∈(n,n+1),n∈Z,则n=.
题目详情
已知函数f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,若k∈(n,n+1),n∈Z,则n=___.
▼优质解答
答案和解析
∵f(x)=xlnx+x-k(x-1),x∈(1,+∞),
∴f′(x)=1+lnx+1-k=lnx+2-k,
当k≤2时,f′(x)>0恒成立,
∴f(x)在(1,+∞)上单调递增,且f(x)>f(1)=1,
∴f(x)在(1,+∞)上没有零点,
当k>2时,令f′(x)>0,解得x>ek-2,函数f(x)单调递增,
令f′(x)<0,解得1k-2,函数f(x)单调递减,
∴f(x)min=f(ek-2)=(k-2)ek-2+ek-2-kek-2+k=-ek-2+k,
∵f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,
∴f(x0)=f(ek-2)=0,
即-ek-2+k=0,
令g(k)=-ek-2+k,k>2.
∴g′(k)=-ek-2<0恒成立,
∴g(k)在(2,+∞)上单调递减,
∵g(3)=-e+3>0,g(4)=-e2+4<0,
∴g(3)•g(4)<0,
∴k∈(3,4),
∵k∈(n,n+1),n∈Z,
∴n=3,
故答案为:3.
∴f′(x)=1+lnx+1-k=lnx+2-k,
当k≤2时,f′(x)>0恒成立,
∴f(x)在(1,+∞)上单调递增,且f(x)>f(1)=1,
∴f(x)在(1,+∞)上没有零点,
当k>2时,令f′(x)>0,解得x>ek-2,函数f(x)单调递增,
令f′(x)<0,解得1
∴f(x)min=f(ek-2)=(k-2)ek-2+ek-2-kek-2+k=-ek-2+k,
∵f(x)=xlnx+x-k(x-1)在(1,+∞)内有唯一零点x0,
∴f(x0)=f(ek-2)=0,
即-ek-2+k=0,
令g(k)=-ek-2+k,k>2.
∴g′(k)=-ek-2<0恒成立,
∴g(k)在(2,+∞)上单调递减,
∵g(3)=-e+3>0,g(4)=-e2+4<0,
∴g(3)•g(4)<0,
∴k∈(3,4),
∵k∈(n,n+1),n∈Z,
∴n=3,
故答案为:3.
看了已知函数f(x)=xlnx+x...的网友还看了以下:
求一道初中的反比列函数和一次函数问题如图直线Y=(3/4)X与双曲线Y=K/X(K大于0)交于点A将 2020-03-30 …
若关于x的方程k/x+1+1/x-1=1/x的平方-1无解,则k的值是A·k=-1 B·k=-1或 2020-05-16 …
是否存在整数k,使方程组2x十y=k|x一y=1的解中,x大于1,y不大于1,若存在,求k的值 2020-08-01 …
已知关于x的分式方程x+1分之x+k-x-1分之k=1的解为负数如题,则k的取值范围是?可能题目不 2020-08-02 …
什么是反比例系数?反比例函数y-1=k/x+1.则()和()成反比例,反比例系数是?希望大家解释一 2020-08-02 …
函数f(x)={x+2,x≠0在点x=0处连续,则K=什么?k.,x=0函数f(x)={x+2,x 2020-08-02 …
1.设M={x丨x=(kπ+π)/2-π/4,k∈Z},N={x丨x=kπ/4+π/2,k∈Z},则 2020-10-31 …
1、设f(x)=x^2-x-1,则f(f(x))2、当x趋于0时,与tanx等价的无穷小为()3、设 2020-11-01 …
等阶无穷小量题?若x→0时,1-cosx与4*(sinx)^k是等阶无穷小量,则k是?x→0时1-c 2020-12-23 …
1关于x的一元一次方程2x-k除以3再减x-3k除以2=1的解x=—1,则k是?2若3(a-b)=2 2021-01-28 …