早教吧作业答案频道 -->数学-->
已知正数x,y,z满足x+y+z=1,求证x^2/(y+2z)+y^2/(z+2x)+z^2(x+2y)>=1/3.
题目详情
已知正数x,y,z满足x+y+z=1,求证x^2/(y+2z) +y^2/(z+2x) +z^2(x+2y)>=1/3.
▼优质解答
答案和解析
方法①
根据平均值不等式:
x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3
y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3
z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3
以上3式相加:
x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)+3(x+y+z)/9≥2(x+y+z)/3
∵x+y+z=1
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
方法②
利用柯西不等式:
[x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)][(y+2z)+(z+2x)+(x+2y)]
≥(x+y+z)^2=1
而显然:(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
【以上两方法证明中等号成立的条件都是x=y=z=1/3】
根据平均值不等式:
x^2/(y+2z)+(y+2z)/9≥2√{[x^2/(y+2z)][(y+2z)/9]}=2x/3
y^2/(z+2x)+(z+2x)/9≥2√{[y^2/(z+2x)][(z+2x)/9]}=2y/3
z^2/(x+2y)+(x+2y)/9≥2√{[z^2/(x+2y)][(x+2y)/9]}=2z/3
以上3式相加:
x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)+3(x+y+z)/9≥2(x+y+z)/3
∵x+y+z=1
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
方法②
利用柯西不等式:
[x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)][(y+2z)+(z+2x)+(x+2y)]
≥(x+y+z)^2=1
而显然:(y+2z)+(z+2x)+(x+2y)=3(x+y+z)=3
∴x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)≥1/3
【以上两方法证明中等号成立的条件都是x=y=z=1/3】
看了已知正数x,y,z满足x+y+...的网友还看了以下:
已知方程组x+y=-7-a x-y=1=3a 的解x为非正数,y为负数,求a的取值范围不好意思,打 2020-04-05 …
成语X乱X正知道的告诉下.为刷团队声望. 2020-04-09 …
1.已知X与Y+2成反比例,当X=1时,Y=4,那么当Y=1时,X的值是()2.已知X是实数,(X 2020-05-14 …
1:若x^2+y^2-4x+6y+13=0,则(x^2+2x)/(x^2-3y^2)=?2:已知a 2020-06-11 …
已知存在唯一一对正整数(x,y)⋯⋯1)已知存在唯一一对正整数(x,y)满足方程x^2+84x+2 2020-07-17 …
已知关于x的一元二次方程2x平方+4x+k-1=0有实数根,k为正整数,求k的知已知关于x的一元二 2020-07-18 …
1已知角a的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,问cos2a=?cosa 2020-07-30 …
1.在欧式空间C[-1,1]中,向量1与x正交?2.已知欧式空间R^3的线性变换σ(x,y,z)=( 2020-11-02 …
已知x,y是正整数,且xy+x+y=23,x^2+xy^2=120,求x^2+y^2的值.设m=xy 2020-11-03 …
已知函数f(x)定义在(0,正无穷大)上的函数,且对任意的x,y属于(0,正无穷大),有f(xy)= 2020-12-08 …