(2006•江西)如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设ÐMGA=a(π3≤α≤2π3)(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函
(2006•江西)如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设ÐMGA=a(≤α≤)
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数.
(2)求y=+的最大值与最小值.
答案和解析
(1)因为G是边长为1的正三角形ABC的中心,
所以AG=
×=,
∠MAG=,
由正弦定理=
得GM=
则S1=GM•GA•sina=
同理可求得S2=
(2)y=+=〔sin2(α+)+sin2(α−)〕
=72(3+cot2a)
因为≤α≤,
所以当a=或a=时,y取得最大值ymax=240
当a=时,y取得最小值ymin=216
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
正整数n(n>1)的三次方分解为m个连续奇数之和,n是质数的时候只有一种吗?正整数n,n是质数的时 2020-04-10 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
数论题目(信息安全数学基础),thanksn是合数,p是n的素因数,证明:若p^a整除n,但p^( 2020-05-22 …
高中数列由递推求通项已知a1=1/3;a2=1/3;an=(1-2M)*N*N/(2*N*N-4* 2020-07-11 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
这个数列是收敛还是发散?Un=[1+(2/3)^n]/n如果Un=[(-1)^n+(2/3)^n] 2020-07-31 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
用洛必达法则求极限lim(x→∞)n(3^(1/n)-1).我的解是lim(n→∞)n(3^(1/n 2020-11-07 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …