早教吧作业答案频道 -->数学-->
(18)XY(X^2-Y^2)+YZ(Y^2-Z^2)+ZX(Z^2-X^2)
题目详情
(18)
XY(X^2-Y^2)+YZ(Y^2-Z^2)+ZX(Z^2-X^2)
XY(X^2-Y^2)+YZ(Y^2-Z^2)+ZX(Z^2-X^2)
▼优质解答
答案和解析
xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)
=x^3y-xy^3+y^3z-yz^3+z^3x-zx^3
=x^3(y-z)+y^3(z-x)+z^3(x-y)
因为x-y=(x-z)+(z-y),所以:
=x^3(y-z)+y^3(z-x)+z^3[(x-z)+(z-y)]
=(x^3-z^3)(y-z)+(y^3-z^3)(z-x)
=(x-z)(x^2+xz+z^2)(y-z)+(y-z)(y^2+yz+z^2)(z-x)
=(x-z)(y-z)(x^2+zx+z^2-y^2-yz-z^2)
=(x-z)(y-z)(x-y)(x+y+z)
另外,观察可知它是轮换式,根据轮换式的做法,
可以设为:=k(x-y)(y-z)(z-x)(x+y+z)
待定系数法~
=x^3y-xy^3+y^3z-yz^3+z^3x-zx^3
=x^3(y-z)+y^3(z-x)+z^3(x-y)
因为x-y=(x-z)+(z-y),所以:
=x^3(y-z)+y^3(z-x)+z^3[(x-z)+(z-y)]
=(x^3-z^3)(y-z)+(y^3-z^3)(z-x)
=(x-z)(x^2+xz+z^2)(y-z)+(y-z)(y^2+yz+z^2)(z-x)
=(x-z)(y-z)(x^2+zx+z^2-y^2-yz-z^2)
=(x-z)(y-z)(x-y)(x+y+z)
另外,观察可知它是轮换式,根据轮换式的做法,
可以设为:=k(x-y)(y-z)(z-x)(x+y+z)
待定系数法~
看了(18)XY(X^2-Y^2)...的网友还看了以下:
好难的不等式设x,y,z为非负实数,求证:√(y^2+z^2+zx+xy)+√(z^2+x^2+x 2020-06-10 …
已知x、y、z都是正数,x^2+xy+y^2=1,y^2+yz+z^2=3,z^2+zx+x^2= 2020-06-12 …
难度很大,五星级!若Y“2”+YZ+Z“2”=A“2”Z“2”+ZX+X“2”=B“2”X“2”+ 2020-06-13 …
六年级三元一次方程1.解方程组6(x+y)=2(x+z)=3(y-z),x+y+z=5.2.已知x 2020-07-17 …
已知xyz=1,x+y+z=2,x^2+y^2+z^2=16.求代数式1\(xy+2z)+1\(y 2020-07-31 …
1.若a+b=1,求证√(a+1/2)+√(b+1/2)≤22.已知x,y,z不全为零,求证:√(x 2020-11-01 …
难度很大,五星级!若Y“2”+YZ+Z“2”=A“2”Z“2”+ZX+X“2”=B“2”X“2”+X 2020-11-01 …
设X>0,Y>0,Z>0,求证√(X^2-XY+Y^2)+√(Y^2-yZ+Z^2)>=√(Z^2+ 2020-11-01 …
1.已知1=xy/(x+y),2=yz/(y+z),3=zx/(z+x),则x+y+z=?2..当x 2020-11-01 …
整式的运算1.已知a^2+b^2+c^2=10,a=b+c,试求:ab-bc+ca的值.2.若xy/ 2021-02-02 …