早教吧作业答案频道 -->数学-->
因式分解,要有详细过程喔.(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
题目详情
因式分解, 要有详细过程喔.
(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
▼优质解答
答案和解析
解 分三步分解
[1],(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)
=-yz(y^4-z^4)+zx(x^4-z^4)-xy(x^4-y^4)
=-yz(y-z)(y+z)*(y^2+z^2)+zx(x-y+y-z)(z+x)(z^2+x^2)-xy(x-y)(x+y)(x^2+y^2)
=-x(x-y)(y-z)[(y+z)(y^2+z^2)+x(y^2+z^2+yz)+x^2*(y+z)+x^3]+z(y-z)(x-y)[((x+y)(x^2+y^2)+z(x^2+y^2+xy)+z^2*(x+y)+z^3]
=(y-z)(x-y)(z-x)[(z^3+x^3+zx(z+x)+y(z^2+x^2+zx)+zx(z+x)+y^2*(z+x)+xyz+y^3-xyz+xyz-zx(z+x)]
=(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz]
[2],(y^2*z^4+z^2*x^4+x^2*y^4)-(y^4*z^2+z^4*x^2+x^4*y^2)
=-y^2*z^2(y-z)(y+z)+z^2*x^2(z+x)(x-y+y-z)-x^2*y^2(x-y)(x+y)
=z^2*(y-z)*(x-y)[x^2+xy+y^2+z(x+y)]-x^2*(y-z)(x-y)[z^2+yz+y^2+x(y+z)]
=(y-z)(x-y)(z-x)[xyz+y^2(z+x)+zx(z+x)+y(z^2+x^2+zx)]
=(y-z)(x-y)(z-x)[2xyz+yz(y+z)+zx(z+x)+xy(x+y)]
[3],xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
=xyz[-yz(y-z)+zx(x-y+y-z)-xy(x-y)]
=xyz[z(y-z)(x-y)-x(x-y)(y-z)]
=xyz(y-z)(x-y)(z-x)
所以上式分解为
(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz-2xyz-yz(y+z)-zx(z+x)-xy(x+y)+xyz]
=(y-z)(x-y)(z-x)(x^3+y^3+z^3)
[1],(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)
=-yz(y^4-z^4)+zx(x^4-z^4)-xy(x^4-y^4)
=-yz(y-z)(y+z)*(y^2+z^2)+zx(x-y+y-z)(z+x)(z^2+x^2)-xy(x-y)(x+y)(x^2+y^2)
=-x(x-y)(y-z)[(y+z)(y^2+z^2)+x(y^2+z^2+yz)+x^2*(y+z)+x^3]+z(y-z)(x-y)[((x+y)(x^2+y^2)+z(x^2+y^2+xy)+z^2*(x+y)+z^3]
=(y-z)(x-y)(z-x)[(z^3+x^3+zx(z+x)+y(z^2+x^2+zx)+zx(z+x)+y^2*(z+x)+xyz+y^3-xyz+xyz-zx(z+x)]
=(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz]
[2],(y^2*z^4+z^2*x^4+x^2*y^4)-(y^4*z^2+z^4*x^2+x^4*y^2)
=-y^2*z^2(y-z)(y+z)+z^2*x^2(z+x)(x-y+y-z)-x^2*y^2(x-y)(x+y)
=z^2*(y-z)*(x-y)[x^2+xy+y^2+z(x+y)]-x^2*(y-z)(x-y)[z^2+yz+y^2+x(y+z)]
=(y-z)(x-y)(z-x)[xyz+y^2(z+x)+zx(z+x)+y(z^2+x^2+zx)]
=(y-z)(x-y)(z-x)[2xyz+yz(y+z)+zx(z+x)+xy(x+y)]
[3],xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
=xyz[-yz(y-z)+zx(x-y+y-z)-xy(x-y)]
=xyz[z(y-z)(x-y)-x(x-y)(y-z)]
=xyz(y-z)(x-y)(z-x)
所以上式分解为
(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz-2xyz-yz(y+z)-zx(z+x)-xy(x+y)+xyz]
=(y-z)(x-y)(z-x)(x^3+y^3+z^3)
看了因式分解,要有详细过程喔.(y...的网友还看了以下:
x,y,z都属于R,求证(1).x^2+y^2+z^2≥xy+yz+zxx,y,z都属于R,求证( 2020-06-11 …
菱形的周长为40,两条对角线的差是4,若设一条对角线的长为x,则下列方程中正确的是A.x^2+(x 2020-07-06 …
若函数f(x)=4^(x-1/2)-a*2^x+27/2在区间[0,2]上的最大值为9,求实数a的 2020-07-17 …
解一元一次方程题11.y-2-18y/6=y/9+212.x+2/4-2x-3/6=113.x-1 2020-07-19 …
已知:4/x(x^2+4)=A/x+Bx+C/x^2+4,求:A=?B=?C=?4/x(x^2+4 2020-07-21 …
若分式方程3/x-2=a/x=4/x(x-2)有增根,则增根可能为?我知道答案是3/(x-2)=a 2020-07-30 …
(1)10y+7=22y-5-3y(2)3.5x-5=0.5x+10-2x(3)7x-2(4-x)= 2020-10-31 …
一.(x^2+3x+2)/(x-1)+(2+x-x^2)/6-(4-x^2)/(10-x)二.(x+ 2020-11-01 …
(1)(x^2+4)^2-16x^2(2)(x+2)(x+3)+3x+1(3)(a+b)^2-6c( 2020-11-01 …
4道分解因式.2道分解计算(初二)分解因式1.x^4(x-y)+y^4(y-x)2.4-12(x-y 2020-11-07 …