早教吧作业答案频道 -->数学-->
因式分解,要有详细过程喔.(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
题目详情
因式分解, 要有详细过程喔.
(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)-(y^2*z^4+z^2*x^4+x^2*y^4)+(y^4*z^2+z^4*x^2+x^4*y^2)+xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
▼优质解答
答案和解析
解 分三步分解
[1],(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)
=-yz(y^4-z^4)+zx(x^4-z^4)-xy(x^4-y^4)
=-yz(y-z)(y+z)*(y^2+z^2)+zx(x-y+y-z)(z+x)(z^2+x^2)-xy(x-y)(x+y)(x^2+y^2)
=-x(x-y)(y-z)[(y+z)(y^2+z^2)+x(y^2+z^2+yz)+x^2*(y+z)+x^3]+z(y-z)(x-y)[((x+y)(x^2+y^2)+z(x^2+y^2+xy)+z^2*(x+y)+z^3]
=(y-z)(x-y)(z-x)[(z^3+x^3+zx(z+x)+y(z^2+x^2+zx)+zx(z+x)+y^2*(z+x)+xyz+y^3-xyz+xyz-zx(z+x)]
=(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz]
[2],(y^2*z^4+z^2*x^4+x^2*y^4)-(y^4*z^2+z^4*x^2+x^4*y^2)
=-y^2*z^2(y-z)(y+z)+z^2*x^2(z+x)(x-y+y-z)-x^2*y^2(x-y)(x+y)
=z^2*(y-z)*(x-y)[x^2+xy+y^2+z(x+y)]-x^2*(y-z)(x-y)[z^2+yz+y^2+x(y+z)]
=(y-z)(x-y)(z-x)[xyz+y^2(z+x)+zx(z+x)+y(z^2+x^2+zx)]
=(y-z)(x-y)(z-x)[2xyz+yz(y+z)+zx(z+x)+xy(x+y)]
[3],xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
=xyz[-yz(y-z)+zx(x-y+y-z)-xy(x-y)]
=xyz[z(y-z)(x-y)-x(x-y)(y-z)]
=xyz(y-z)(x-y)(z-x)
所以上式分解为
(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz-2xyz-yz(y+z)-zx(z+x)-xy(x+y)+xyz]
=(y-z)(x-y)(z-x)(x^3+y^3+z^3)
[1],(yz^5+zx^5+xy^5)-(zy^5+xz^5+yx^5)
=-yz(y^4-z^4)+zx(x^4-z^4)-xy(x^4-y^4)
=-yz(y-z)(y+z)*(y^2+z^2)+zx(x-y+y-z)(z+x)(z^2+x^2)-xy(x-y)(x+y)(x^2+y^2)
=-x(x-y)(y-z)[(y+z)(y^2+z^2)+x(y^2+z^2+yz)+x^2*(y+z)+x^3]+z(y-z)(x-y)[((x+y)(x^2+y^2)+z(x^2+y^2+xy)+z^2*(x+y)+z^3]
=(y-z)(x-y)(z-x)[(z^3+x^3+zx(z+x)+y(z^2+x^2+zx)+zx(z+x)+y^2*(z+x)+xyz+y^3-xyz+xyz-zx(z+x)]
=(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz]
[2],(y^2*z^4+z^2*x^4+x^2*y^4)-(y^4*z^2+z^4*x^2+x^4*y^2)
=-y^2*z^2(y-z)(y+z)+z^2*x^2(z+x)(x-y+y-z)-x^2*y^2(x-y)(x+y)
=z^2*(y-z)*(x-y)[x^2+xy+y^2+z(x+y)]-x^2*(y-z)(x-y)[z^2+yz+y^2+x(y+z)]
=(y-z)(x-y)(z-x)[xyz+y^2(z+x)+zx(z+x)+y(z^2+x^2+zx)]
=(y-z)(x-y)(z-x)[2xyz+yz(y+z)+zx(z+x)+xy(x+y)]
[3],xyx(yz^2+zx^2+xy^2)-xyz(zy^2+yx^2+xz^2)
=xyz[-yz(y-z)+zx(x-y+y-z)-xy(x-y)]
=xyz[z(y-z)(x-y)-x(x-y)(y-z)]
=xyz(y-z)(x-y)(z-x)
所以上式分解为
(y-z)(x-y)(z-x)[x^3+y^3+z^3+yz(y+z)+zx(z+x)+xy(x+y)+xyz-2xyz-yz(y+z)-zx(z+x)-xy(x+y)+xyz]
=(y-z)(x-y)(z-x)(x^3+y^3+z^3)
看了因式分解,要有详细过程喔.(y...的网友还看了以下:
b取何值时直线x-y+b=0被曲线x^2+y^2=5所截得的弦长为2√3.答案是正负二可是我怎么做 2020-05-13 …
高数:曲线x^2+y^2=5,z=x^2-y^2在点(1,2,-3)处的切线方程为曲线x^2+y^ 2020-05-17 …
方程组,二元二次、急(过程)(1){x^2+y^2=5,{(x-y)^2-6(x-y)+5=0(2 2020-07-25 …
求圆关于点对称的题目,有一步骤没看懂求圆x^2+y^2-x+2y=0关于点0(1,2)对称的圆方程 2020-07-26 …
已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为y=4/3x,求双曲线的标准方程设双曲线方 2020-07-26 …
不等式的证明1.已知x,y属于R.x^2+y^2≤1,求证绝对值(x^2+2xy-y^2)≤根号2 2020-08-03 …
{x^2+y^2=12x+y=5{x^2-y^2+x-y-6=0x^2-y^2-x+y-4=0{x^ 2020-10-31 …
已知x+y=5,xy=3,求x^2+y^2的值和x-y的值已知x-y=5,x^2+y^2=9求xy的 2020-11-01 …
圆x^2+y^2+8x-4y=0与圆x^2+y^2=20关于直线y=2x+5对称,两圆交点为A,B求 2020-11-01 …
(1)y-1/2-2=y+2/5第1小题不要理解错了,我用文字说一遍:2分之y减1减2等于5分之y加 2020-11-24 …