早教吧作业答案频道 -->数学-->
矩阵证明题设A为n阶对称矩阵,证明对任意的n×1阶矩阵X有XTAX=0,则必有A=0
题目详情
矩阵证明题
设A为n阶对称矩阵,证明对任意的n×1阶矩阵X有XTAX=0,则必有A=0
设A为n阶对称矩阵,证明对任意的n×1阶矩阵X有XTAX=0,则必有A=0
▼优质解答
答案和解析
证明: 取X=εi=(0,...,1,...,0)^T, 第i个分量为1, 其余分量为0
由已知 X^TAX = aii = 0, i=1,2,...,n.
取 X=εij=(0,...,1,...,1,...,0)^T, 第i,j个分量为1, 其余分量为0
由已知 X^TAX = 2aij = 0, i,j=1,2,...,n, i≠j.
综上有 aij = 0, i,j=1,2,...,n
即有 A = 0.
由已知 X^TAX = aii = 0, i=1,2,...,n.
取 X=εij=(0,...,1,...,1,...,0)^T, 第i,j个分量为1, 其余分量为0
由已知 X^TAX = 2aij = 0, i,j=1,2,...,n, i≠j.
综上有 aij = 0, i,j=1,2,...,n
即有 A = 0.
看了矩阵证明题设A为n阶对称矩阵,...的网友还看了以下:
关于矩阵的问题希望有人帮我证明一下下列两个题:1,证:矩阵A的伴随矩阵=|A|的n-1次方2,已知 2020-04-13 …
求证明一个范数:向量X属于C^n,对于任何正有限nxn的矩阵M来说,证明(X^tMX)^-1是一个 2020-05-13 …
线性代数矩阵证明题1个求详解设矩阵A=|x-1000x-1000x-1a4a3a2x+a1,证明| 2020-06-12 …
一道高等代数关于迹Tr的问题(1)证明,若一复方阵的所有特征值全为0,则A为幂零矩阵;(2)证明对 2020-06-19 …
线性代数,瑞利原理如果B为正定矩阵,利用瑞利原理证明:矩阵A+B之最小特征值大于矩阵A的最小特征值 2020-07-13 …
矩阵问题已知A矩阵,AX+I=A^2+X(其中I为单位矩阵),求X(求思路,谢谢)因为AX+I=A 2020-07-14 …
矩阵证明:对任意非零向量x,x'Ax>=0.证明矩阵A是非负定的 2020-07-23 …
若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定若A是 2020-07-31 …
这个矩阵问题希望老师能帮助我!已知A矩阵,AX+I=A^2+X(其中I为单位矩阵),求X(求思路,因 2020-11-03 …
证明矩阵可逆现在有矩阵A构造矩阵N,它的列构成NulA的基,(NulA为矩阵A的化零空间,也就是Ax 2020-11-03 …