早教吧作业答案频道 -->其他-->
有n个首项为1的等差数列,设第m个数列的k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列.(1)当d3=2时,求a32,a33,a34以及a3n;(2)证明dm=p1d1+p2d2(3
题目详情
有n个首项为1的等差数列,设第m个数列的k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列.
(1)当d3=2时,求a32,a33,a34以及a3n;
(2)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;
(3)当d1=1,d2=3时,将数列{dm}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列),设前m组中所有数之和为(cm)4,(cm>0),求数列{2cm,dm}的前n项和Sn.
(1)当d3=2时,求a32,a33,a34以及a3n;
(2)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;
(3)当d1=1,d2=3时,将数列{dm}分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列),设前m组中所有数之和为(cm)4,(cm>0),求数列{2cm,dm}的前n项和Sn.
▼优质解答
答案和解析
(1)当d3=2时,由题意可知a31=1
∴a32=a31+d3=3,a33=a31+2d3=5,a34=a31+3d=7a31
a3n=a31+(n-1)d3=2n-1
(2)由题意知,:(Ⅰ)由题意知amn=1+(n-1)dm.
则a2n-a1n=[1+(n-1)d2]-[1+(n-1)d1]=(n-1)(d2-d1),
同理,a3n-a2n=(n-1)(d3-d2),a4n-a3n=(n-1)(d4-d3),…,ann-a(n-1)n=(n-1)(dn-dn-1).
又因为a1n,a2n,a3n,,ann成等差数列,所以a2n-a1n=a3n-a2n=…=ann-a(n-1)n.
故d2-d1=d3-d2=…=dn-dn-1,即dn是公差为d2-d1的等差数列.
所以,dm=d1+(m-1)(d2-d1)=(2-m)d1+(m-1)d2.
令p1=2-m,p2=m-1,则dm=p1d1+p2d2,此时p1+p2=1.
(3)当d1=1,d2=3时,dm=2m-1(m∈N*).
数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),.
按分组规律,第m组中有2m-1个奇数,
所以第1组到第m组共有1+3+5+…+(2m-1)=m2个奇数.
注意到前k个奇数的和为1+3+5+…+(2k-1)=k2,
所以前m2个奇数的和为(m2)2=m4.
即前m组中所有数之和为m4,所以(cm)4=m4.
因为cm>0,所以cm=m,从而 2cmdm=(2m−1)•2m(m∈N*).
所以Sn=1•2+3•22+5•23+7•24+…+(2n-3)•2n-1+(2n-1)•2n.①
2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2n+1.②
②-①得:Sn=-2-2(22+23+…+2n)+(2n-1)•2n+1
=−2−2•
+(2n−1)•2n+1
=(2n-3)2n+1+6.
∴a32=a31+d3=3,a33=a31+2d3=5,a34=a31+3d=7a31
a3n=a31+(n-1)d3=2n-1
(2)由题意知,:(Ⅰ)由题意知amn=1+(n-1)dm.
则a2n-a1n=[1+(n-1)d2]-[1+(n-1)d1]=(n-1)(d2-d1),
同理,a3n-a2n=(n-1)(d3-d2),a4n-a3n=(n-1)(d4-d3),…,ann-a(n-1)n=(n-1)(dn-dn-1).
又因为a1n,a2n,a3n,,ann成等差数列,所以a2n-a1n=a3n-a2n=…=ann-a(n-1)n.
故d2-d1=d3-d2=…=dn-dn-1,即dn是公差为d2-d1的等差数列.
所以,dm=d1+(m-1)(d2-d1)=(2-m)d1+(m-1)d2.
令p1=2-m,p2=m-1,则dm=p1d1+p2d2,此时p1+p2=1.
(3)当d1=1,d2=3时,dm=2m-1(m∈N*).
数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),.
按分组规律,第m组中有2m-1个奇数,
所以第1组到第m组共有1+3+5+…+(2m-1)=m2个奇数.
注意到前k个奇数的和为1+3+5+…+(2k-1)=k2,
所以前m2个奇数的和为(m2)2=m4.
即前m组中所有数之和为m4,所以(cm)4=m4.
因为cm>0,所以cm=m,从而 2cmdm=(2m−1)•2m(m∈N*).
所以Sn=1•2+3•22+5•23+7•24+…+(2n-3)•2n-1+(2n-1)•2n.①
2Sn=1•22+3•23+5•24+…+(2n-3)•2n+(2n-1)•2n+1.②
②-①得:Sn=-2-2(22+23+…+2n)+(2n-1)•2n+1
=−2−2•
4(1−2n−1) |
1−2 |
=(2n-3)2n+1+6.
看了有n个首项为1的等差数列,设第...的网友还看了以下:
已知公差不为0的等差数列{an}的首项为1,前n项和为Sn,且数列{Snan}是等差数列.(1)求 2020-05-13 …
若等差数列{an}的前n项和为Sn,且Sn/S2n为常数,则称该数列为S数列1.若首项为a1的等差 2020-06-18 …
已知有穷数列{an},{bn}对任意的正整数n∈N*都有a1bn+a2bn-1+a3bn-2+…+ 2020-06-22 …
已知数列{an}首项为a,公差为1的等差数列已知数列an是首项为a,公差为1的等差数列,数列bn满 2020-07-09 …
数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列 2020-07-09 …
设数列{an}是首项为1的等比数列,若{1/[2an+a(n+1)]}是等差数列,则(1/2a1+ 2020-07-09 …
数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N+),若b3=-2,b10 2020-07-30 …
已知各项均为正数的数列an的首项为1,且log2a(n+1)=log2an+1,数列bn-an为等 2020-07-30 …
等差数列an的首项a1为a,公差d=2,前n项和为Sn(1)若S1,S2,S4成等比数列,求数列a 2020-07-30 …
一道极限和数列的综合问题.急设首项为a公差为d的等差数列的钱n项和为An,又首项为a公比为q的等比 2020-08-02 …