早教吧作业答案频道 -->数学-->
在数列{an}中,其前n项和Sn与an满足关系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},,求b1b2-b2b3+b3b4-b4
题目详情
在数列{an}中,其前n项和Sn与an满足关系式:(t-1)Sn+(2t+1)an=t(t>0,n=1,2,3,…).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},
,求b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1的值.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),已知数列{bn},

▼优质解答
答案和解析
(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,可求的首项a1=
;当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t,两式相减可得(t-1)an+(2t+1)an-(2t+1)an-1=0,从而有
,故可知数列{an}是以
为公比,
为首项的等比数列;
(II)由(Ⅰ)可知,
,
,则bn+1=bn+2,从而可得数列{bn}是以2为公差,首项为1的等差数列,从而bn=2n-1由于涉及(-1)n+1,故分n为偶数及奇数分类求和.
证明:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,∴a1=
当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
∴
∴数列{an}是以
为公比,
为首项的等比数列;
【解析】
(II)由(Ⅰ)可知,
,
,则bn+1=bn+2
所以,数列{bn}是以2为公差,首项为1的等差数列
即bn=2n-1
①当n为奇数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1)
=3+4(b3+b5+…+bn)
=2n2+2n-1
②当n为偶数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-4(b2+b4+…+bn)
=-(2n2+2n)
所以,原式=




(II)由(Ⅰ)可知,


证明:(Ⅰ) 当n=1时,(t-1)S1+(2t+1)a1=t,∴a1=

当n≥2时,(t-1)Sn+(2t+1)an=t,(t-1)Sn-1+(2t+1)an-1=t
∴(t-1)an+(2t+1)an-(2t+1)an-1=0
∴3tan=(2t+1)an-1,t>0
∴

∴数列{an}是以


【解析】
(II)由(Ⅰ)可知,


所以,数列{bn}是以2为公差,首项为1的等差数列
即bn=2n-1
①当n为奇数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b1b2+b3(b4-b2)+b5(b6-b4)+…+bn(bn+1-bn-1)
=3+4(b3+b5+…+bn)
=2n2+2n-1
②当n为偶数时,
b1b2-b2b3+b3b4-b4b5+…+(-1)n+1bnbn+1
=b2(b1-b3)+b4(b3-b5)+…+bn(bn-1-bn+1)
=-4(b2+b4+…+bn)
=-(2n2+2n)
所以,原式=

看了在数列{an}中,其前n项和S...的网友还看了以下:
已知公差不为0的等差数列的前n项和为,且满足,又,,依次成等比数列,数列满足,,其中k为大于0的常 2020-05-13 …
(本小题满分10分)已知数列,其前项和为.(Ⅰ)求,;(Ⅱ)求数列的通项公式,并证明数列是等差数列 2020-05-14 …
(本小题满分10分)已知数列,其前项和为.(Ⅰ)求,;(Ⅱ)求数列的通项公式,并证明数列是等差数列 2020-05-14 …
已知两个无穷数列分别满足,,其中,设数列的前项和分别为,(1)若数列都为递增数列,求数列的通项公式 2020-07-03 …
下列句中没有通假现象的是[]A.先自度其足,而置之其坐B.其子所以反者,倍其所以嫁C.人不能自制于 2020-07-07 …
若数列{An}满足An+T=An,其中T为非零正整数,则称数列{An}为周期数列,T为数列{An} 2020-07-09 …
对于,若数列满足,则称这个数列为“K数列”.(1)已知数列是“K数列”,求实数的取值范围;(2)是 2020-07-30 …
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.( 2020-11-18 …
比如:A列1足球,台球,篮球2铅笔,橡皮,盒子3菊花,瓶子,花篮4桌子,椅子,香蕉把A1和A3中的“ 2020-12-08 …
已知数列{an}是递增的等比数列,满足a2=8,且(5/4)a2是a1,a3的等差中项,数列{bn} 2020-12-24 …