早教吧作业答案频道 -->数学-->
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2)1)求数列{an}和{bn}的通项公式2)求和:b1/T1T2+b1/T2T3+…+bn/TnTn+1
题目详情
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b3=a3,S5=5(T3+b2)
1)求数列{an}和{bn}的通项公式
2)求和:b1/T1T2+b1/T2T3+…+bn/TnTn+1
1)求数列{an}和{bn}的通项公式
2)求和:b1/T1T2+b1/T2T3+…+bn/TnTn+1
▼优质解答
答案和解析
1、
设等差数列{an}公差为d,等比数列{bn}公比为q.
a2+b3=a3 b3=d b1q²=d b1=1代入,得d=q²
S5=5(T3+b2) 5a1+10d=5(b1+b1q+b1q²+b1q)
a1=1 b1=1 d=q²代入,整理,得
q²-2q=0
q(q-2)=0
q=0(等比数列公比不等于0,舍去)或q=2
d=q²=2²=4
an=a1+(n-1)d=1+4(n-1)=4n-3
n=1时,a1=4-3=1,同样满足.
bn=b1q^(n-1)=2^(n-1)
n=1时,b1=2^0=1,同样满足.
数列{an}的通项公式为an=4n-3;数列{bn}的通项公式为bn=2^(n-1).
2、
Tn=b1(q^n-1)/(q-1)=2^n-1 Tn+1=2^(n+1) -1
1/Tn-1/T(n+1)=1/(2^n-1)-1/[2^(n+1)-1]
=[2^(n+1)-1-2^n+1]/[(2^n-1)(2^(n+1)-1)]
=2^n/[(2^n-1)(2^(n+1)-1)]
=2×bn/(TnTn+1)
bn/(TnTn+1)=(1/2)[1/Tn-1/T(n+1)]
b1/(T1T2)+b2/(T2T3)+...+bn/[TnT(n+1)]
=(1/2)[1/T1-1/T2+1/T2-1/T3+...+1/Tn-1/T(n+1)]
=(1/2)[1/T1-1/T(n+1)]
=(1/2)[1-1/[2^(n+1)-1]]
=(1/2)[2^(n+1)-2]/[2^(n+1)-1]
=(2^n-1)/[2^(n+1)-1]
设等差数列{an}公差为d,等比数列{bn}公比为q.
a2+b3=a3 b3=d b1q²=d b1=1代入,得d=q²
S5=5(T3+b2) 5a1+10d=5(b1+b1q+b1q²+b1q)
a1=1 b1=1 d=q²代入,整理,得
q²-2q=0
q(q-2)=0
q=0(等比数列公比不等于0,舍去)或q=2
d=q²=2²=4
an=a1+(n-1)d=1+4(n-1)=4n-3
n=1时,a1=4-3=1,同样满足.
bn=b1q^(n-1)=2^(n-1)
n=1时,b1=2^0=1,同样满足.
数列{an}的通项公式为an=4n-3;数列{bn}的通项公式为bn=2^(n-1).
2、
Tn=b1(q^n-1)/(q-1)=2^n-1 Tn+1=2^(n+1) -1
1/Tn-1/T(n+1)=1/(2^n-1)-1/[2^(n+1)-1]
=[2^(n+1)-1-2^n+1]/[(2^n-1)(2^(n+1)-1)]
=2^n/[(2^n-1)(2^(n+1)-1)]
=2×bn/(TnTn+1)
bn/(TnTn+1)=(1/2)[1/Tn-1/T(n+1)]
b1/(T1T2)+b2/(T2T3)+...+bn/[TnT(n+1)]
=(1/2)[1/T1-1/T2+1/T2-1/T3+...+1/Tn-1/T(n+1)]
=(1/2)[1/T1-1/T(n+1)]
=(1/2)[1-1/[2^(n+1)-1]]
=(1/2)[2^(n+1)-2]/[2^(n+1)-1]
=(2^n-1)/[2^(n+1)-1]
看了设等差数列{an}的前n项和为...的网友还看了以下:
电路书上有个公式q(t)=q(0)+∫(上t,下0)idξ但是根据电路的特性ξ应该是(0-t)的意思 2020-03-30 …
已知定椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左,右顶点分别为A和B,点S和椭圆C 2020-05-13 …
在等差数列{an}中,若s,t∈N※,有(as-at)/(s-t)=常数若s.t,r∈N※,且s, 2020-05-14 …
已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n不等 2020-05-16 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
数列an满足递推式(a(n+2))*an-(a(n+1))^2=(t^n)*(t-1),a1=1, 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
某种商品在最近30天内的价格f(t)(元/件)与时间t(天)的函数关系是f(t)=t+10(0<t≤ 2020-12-08 …
有一幅磁通量随时间变化的正弦图像,磁通量最大值是a(这是第一个波峰),这是时间为t1;一开始时间t0 2020-12-15 …