早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和为Sn,a1=1,且满足anan+1=2Sn,数列{bn}满足b1=16,bn+1-bn=2n,则数列{bnan}中第项最小.
题目详情
已知数列{an}的前n项和为Sn,a1=1,且满足anan+1=2Sn,数列{bn}满足b1=16,bn+1-bn=2n,则数列{
}中第___项最小.
bn |
an |
▼优质解答
答案和解析
当n=1时,2S1=a1a2,即2a1=a1a2,∴a2=2.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∵b1=16,bn+1-bn=2n,∴bn =( bn -bn-1)+( bn-1 -bn-2)+ ( bn-2 -bn-3)+…+( b2 -b1)+b1=n(n-1)+16
=n+
-1,利用基本不等式得n=4时n+
-1最小,∴数列{
}中第 4项最小.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∵b1=16,bn+1-bn=2n,∴bn =( bn -bn-1)+( bn-1 -bn-2)+ ( bn-2 -bn-3)+…+( b2 -b1)+b1=n(n-1)+16
bn |
an |
16 |
n |
16 |
n |
bn |
an |
看了已知数列{an}的前n项和为S...的网友还看了以下:
已知数列{an}的前项n和Sn=n^2,数列{bn}为等比数列,且满足b1=a1,2b^3=b^4 2020-05-13 …
数学:如果m,n满足等式x^2+mx-15=(x+3)(x+n)求m+n的值1.如果m,n满足等式 2020-05-17 …
在平面直角坐标系中,已知An(n,an),Bn(n,bn),Cn(n-1,0)(n∈N*),满足向 2020-06-27 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知正数数列{an}的前n项和为Sn,且对任意的正整数n满足2Sn=an+1.(Ⅰ)求数列{an} 2020-07-29 …
求通项式已知bn+1=bn^2+bn数列{bn}已知b1=1满足bn+1=bn^2+bn(注:n为 2020-07-29 …
已知数列{an}的各项均为正数,Sn为、为其前n项和,对于任意的n∈N*满足关系式2Sn=3an- 2020-07-30 …
1.数列{an}的前n项和记为Sn,已知a1=1,an+1(n+1是a的角标)=(n+2)/n×S 2020-08-02 …
n+2n+1n+1n+21.已知正整数n满足5.2-5.2=3000,求n的值2.一个正方体的棱长是 2020-11-19 …
各项均为正数的数列{an}前n项和为Sn,且4Sn=a2n+2an+1,n∈N+.(1)求数列{an 2020-12-23 …