早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量求A^n

题目详情
设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量
求A^n
▼优质解答
答案和解析
因为 A^2+A-2E=0
所以A的特征值满足 λ^2+λ-2=0
所以 (λ-1)(λ+2)=0
所以 A 的另一个特征值为 -2.
又因为实对称矩阵属于不同特征值的特征向量正交
所以属于特征值-2的特征向量满足
x2+x3=0
x1+x3=0
得 (1,1,-1)^T.
令 P=
0 1 1
1 0 1
1 1 -1
则 P^-1AP=diag(1,1,-2)
所以 A = Pdiag(1,1,-2)P^-1 =
0 -1 1
-1 0 1
1 1 0