早教吧作业答案频道 -->数学-->
设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量求A^n
题目详情
设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量
求A^n
求A^n
▼优质解答
答案和解析
因为 A^2+A-2E=0
所以A的特征值满足 λ^2+λ-2=0
所以 (λ-1)(λ+2)=0
所以 A 的另一个特征值为 -2.
又因为实对称矩阵属于不同特征值的特征向量正交
所以属于特征值-2的特征向量满足
x2+x3=0
x1+x3=0
得 (1,1,-1)^T.
令 P=
0 1 1
1 0 1
1 1 -1
则 P^-1AP=diag(1,1,-2)
所以 A = Pdiag(1,1,-2)P^-1 =
0 -1 1
-1 0 1
1 1 0
所以A的特征值满足 λ^2+λ-2=0
所以 (λ-1)(λ+2)=0
所以 A 的另一个特征值为 -2.
又因为实对称矩阵属于不同特征值的特征向量正交
所以属于特征值-2的特征向量满足
x2+x3=0
x1+x3=0
得 (1,1,-1)^T.
令 P=
0 1 1
1 0 1
1 1 -1
则 P^-1AP=diag(1,1,-2)
所以 A = Pdiag(1,1,-2)P^-1 =
0 -1 1
-1 0 1
1 1 0
看了设A为三阶实对称矩阵,且满足A...的网友还看了以下:
已知:f(x)=lg(a^x-b^x)(a>1>b>0)若f(x)在(1,+∞)内恒为正,试比较a 2020-05-13 …
a是不为1的有理数,我们把1/1-a称为a的倒差数.如:2的倒差数是1/1-2=-1,-1的倒差数 2020-05-13 …
若a是不为1的有理数,我们把1/1-a称为a的倒差数...若a是不为1的有理数,我们把1/1-a称 2020-05-13 …
定义:a是不为1的有理数,我们把1-a分之1称为a的差倒数.已知a1=负3分之1,a2是a1的差倒 2020-05-16 …
若a是不为1的有理数,则我们把1/1-a的差倒数...定义:a是不为1的有理数,我们把1/1-a称 2020-05-16 …
a是不为1的有理数,我们把1/1-a成为a的差倒数.如2的差倒数是1/1-a=-1 如:-1的差倒 2020-05-16 …
定义:a是不为1的有理数,我们把1/1-a称为a的差倒数.如:2的倒差数是1/1-2=-1,-1的 2020-05-16 …
a是不为1的有理数,我们把1除以1-a称为a的差倒数,如2的差倒数是1除以1-2=负一-1的差倒数 2020-05-16 …
定义:a是不为1的有理数,把1-a分之一称为a的差倒数.如2的差倒数为1-2分之一=-1;-1的差 2020-05-16 …
定义:a是不为1的有理数,我们把1-a分之1称为a的差倒数,如2的差倒数是1-2分之1=-1,-1 2020-05-16 …