早教吧作业答案频道 -->数学-->
求函数f(x)=1/(1+x4)在零到正无穷上的定积分
题目详情
求函数f(x)=1/(1+x4)在零到正无穷上的定积分
▼优质解答
答案和解析
∵∫dx/(1+x^4)=∫dx/[(x²+√2x+1)(x²-√2x+1)]
=(1/(4√2))∫[(2x+√2+√2)/(x²+√2x+1)-(x-√2-√2)/(x²-√2x+1)]dx
=(1/(4√2))[∫(2x+√2)dx/(x²+√2x+1)-∫(x-√2)dx/(x²-√2x+1)
+√2∫dx/(x²+√2x+1)+√2∫dx/(x²-√2x+1)]
=(1/(4√2))[∫d(x²+√2x+1)/(x²+√2x+1)-∫d(x²-√2x+1)/(x²-√2x+1)
+√2∫dx/((x+1/√2)²+1/2)+√2∫dx/((x-1/√2)²+1/2)]
=(1/(4√2))[ln(x²+√2x+1)-ln(x²-√2x+1)+2arctan(√2x+1)+2arctan(√2x-1)]│
=(1/(4√2))[ln((x²+√2x+1)/(x²-√2x+1))+2arctan(√2x+1)+2arctan(√2x-1)]│
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)
-2arctan(1)-2arctan(-1)]
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)-π/2+π/2]
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)]
∴原式=lim(t->+∞)∫dx/(1+x^4)
=lim(t->+∞){(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)]}
=lim(t->+∞){(1/(4√2))[ln((1+√2/t+1/t²)/(1-√2/t+1/t²))+2arctan(√2t+1)+2arctan(√2t-1)]}
=(1/(4√2))[ln((1+0+0)/(1-0+0))+2(π/2)+2(π/2)]
=(1/(4√2))(2π)
=π/(2√2).
=(1/(4√2))∫[(2x+√2+√2)/(x²+√2x+1)-(x-√2-√2)/(x²-√2x+1)]dx
=(1/(4√2))[∫(2x+√2)dx/(x²+√2x+1)-∫(x-√2)dx/(x²-√2x+1)
+√2∫dx/(x²+√2x+1)+√2∫dx/(x²-√2x+1)]
=(1/(4√2))[∫d(x²+√2x+1)/(x²+√2x+1)-∫d(x²-√2x+1)/(x²-√2x+1)
+√2∫dx/((x+1/√2)²+1/2)+√2∫dx/((x-1/√2)²+1/2)]
=(1/(4√2))[ln(x²+√2x+1)-ln(x²-√2x+1)+2arctan(√2x+1)+2arctan(√2x-1)]│
=(1/(4√2))[ln((x²+√2x+1)/(x²-√2x+1))+2arctan(√2x+1)+2arctan(√2x-1)]│
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)
-2arctan(1)-2arctan(-1)]
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)-π/2+π/2]
=(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)]
∴原式=lim(t->+∞)∫dx/(1+x^4)
=lim(t->+∞){(1/(4√2))[ln((t²+√2t+1)/(t²-√2t+1))+2arctan(√2t+1)+2arctan(√2t-1)]}
=lim(t->+∞){(1/(4√2))[ln((1+√2/t+1/t²)/(1-√2/t+1/t²))+2arctan(√2t+1)+2arctan(√2t-1)]}
=(1/(4√2))[ln((1+0+0)/(1-0+0))+2(π/2)+2(π/2)]
=(1/(4√2))(2π)
=π/(2√2).
看了求函数f(x)=1/(1+x4...的网友还看了以下:
知道的进已知函数x不等于1时,f(x)=1/|x-1|,x=1时,f(x)=1,又知h(x)=[f( 2020-03-31 …
已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m为实数)恰有四个不相等的实数根 2020-05-16 …
函数f(x)=lg|x-1|,(x≠1)1(x=1),若关于x的方程f²(x)+bf(x)+c=0 2020-07-31 …
已知函数f(x)是定义在R上的偶函数,当x属于(负无穷,0)时,f(x)=x-x4,则f(2)=已 2020-08-01 …
f(x)=4x3-x4的单调区间和极值 2020-08-02 …
定义域为r的函数f(x)=lgx-2的绝对值,x不等于2,1.x=2若关于x的方程f(x)的平方+b 2020-10-31 …
k为实数,f(x)=(x4+kx2+1)/(x4+x2+1),对任意三个实数a,b,c存在以f(a) 2020-11-12 …
知函数f(x)={1/|x-1|(x≠1),1(x=1)},若关于×的函数h(x)=f(x)^2+b 2020-11-20 …
是习题,我没有看明白.对下列函数进行f(a+h)-f(a)并化简.1.f(x)=3x+22.f(x) 2020-12-01 …
怎样求函数零点f(x)=x5+x4-2x3-8x-8,求其零点,和非负值区间 2020-12-26 …