早教吧作业答案频道 -->数学-->
因式分解练习ax+by=3ax2+by2=7ax3+by3=16ax4+by4=42求ax5+by5=?(x+y)(y+z)(x+z)+xyz6x2-15y2-6z2-xy-5xz+21yz
题目详情
因式分解练习
ax+by=3 ax2+by2=7 ax3+by3=16 ax4+by4=42 求ax5+by5=?
(x+y)(y+z)(x+z)+xyz
6x2-15y2-6z2-xy-5xz+21yz
ax+by=3 ax2+by2=7 ax3+by3=16 ax4+by4=42 求ax5+by5=?
(x+y)(y+z)(x+z)+xyz
6x2-15y2-6z2-xy-5xz+21yz
▼优质解答
答案和解析
第一题:因为ax2+by2=7
则ax2=7-by2,by2=7-ax2
ax3=7x-bxy2,by3=7y-ax2y
ax3+by3=7(x+y)-xy(by+ax)=16
即7(x+y)-3xy=16
又因为ax3+by3=16
则ax3=16-by3,by3=16-ax3
ax4=16x-bxy3,by4=16y-ax3y
ax4+by4=16(x+y)-xy(by2+ax2)=42
即16(x+y)-7xy=42
由两式组成方程组:7(x+y)-3xy=16
16(x+y)-7xy=42
解得x+y=-14,xy=-38
又因为 ax4+by4=42
ax4=42-by4,by4=42-ax4
ax5=42x-bxy4,by5=42y-ax4y
ax5+by5=42(x+y)-xy(by3+ax3)
=42*(-14)-16*(-38)
=-588+608
=20
第二题:(x+y)(y+z)(x+z)+xyz=x+y+z-xyz+xyz=x+y+z
第三题:6x2-15y2-6z2-xy-5xz+21yz =(2 x + 3 y - 3 z) (3 x - 5 y + 2 z)
则ax2=7-by2,by2=7-ax2
ax3=7x-bxy2,by3=7y-ax2y
ax3+by3=7(x+y)-xy(by+ax)=16
即7(x+y)-3xy=16
又因为ax3+by3=16
则ax3=16-by3,by3=16-ax3
ax4=16x-bxy3,by4=16y-ax3y
ax4+by4=16(x+y)-xy(by2+ax2)=42
即16(x+y)-7xy=42
由两式组成方程组:7(x+y)-3xy=16
16(x+y)-7xy=42
解得x+y=-14,xy=-38
又因为 ax4+by4=42
ax4=42-by4,by4=42-ax4
ax5=42x-bxy4,by5=42y-ax4y
ax5+by5=42(x+y)-xy(by3+ax3)
=42*(-14)-16*(-38)
=-588+608
=20
第二题:(x+y)(y+z)(x+z)+xyz=x+y+z-xyz+xyz=x+y+z
第三题:6x2-15y2-6z2-xy-5xz+21yz =(2 x + 3 y - 3 z) (3 x - 5 y + 2 z)
看了因式分解练习ax+by=3ax...的网友还看了以下:
数学巧算计算题,大家进来看看.当x=(3根号3)y=根号2求(x-y)(x+y)(x^2-xy+y 2020-04-27 …
xlny=lnx导数说的精确一点,是求dy/dx我的方法是这样的xlny=lnxx/y*y'+ln 2020-05-14 …
x^2+xy+y^2)称为立方差公式,据此已知x^3+y^3=(x+y)(x^2-xy+y^2)称 2020-05-14 …
这个符号“^”表方次数,.求下面3题的通解, y(x^2-xy+y^2)+x(x^2+xy+y^2 2020-05-14 …
已知f(x)是定义在自然数集N上的函数,满足f(1)=3/2,且对任意x,y∈N,有:f(x+y) 2020-05-16 …
1.已知集合A={(x,y)|x^2-y^2-y=4},B={(x,y)|x^2-xy-2y^2= 2020-07-30 …
(x+y)(x^2-xy+y^2)=x^3+y^3(x-y)(x^2+xy+y^2)=x^3-y^3 2020-11-01 …
(x-y)(x+y)=x^2-y^2(x-y)(x^2+xy+y^2)=x^3-y^3……(x-y) 2020-11-03 …
(x-y)()=x^2-y^2(x-y)(x^2+xy+y^2)=(x-y)(x^3+x^2y+xy 2020-11-03 …
1.因式分解2a^2+ab-6b^2-a+19b-152.已知公式:x^3+y^3=(x+y)(x^ 2020-12-24 …