早教吧作业答案频道 -->数学-->
一些初中的因式分解的题目,求大神解答!x4-5x2+44x4-65x2y2+16y4a6-7a3b3-8b66a4-5a3-4a24a6-37a4b2+9a2b4(x2-3)2-4x2x2(x-2)2-9(3x2+2x+1)2-(2x2+3x+3)2(x2+x)2+17(x2+x)+60(x2+xy+y2)(x2+xy+2y2)-12y4x2-2xy-3y2+2x+10y-8(a-b)x2+2ax+a
题目详情
一些初中的因式分解的题目,求大神解答!
x4-5x2+4
4x4-65x2y2+16y4
a6-7a3b3-8b6
6a4-5a3-4a2
4a6-37a4b2+9a2b4
(x2-3)2-4x2
x2(x-2)2-9
(3x2+2x+1)2-(2x2+3x+3)2
(x2+x)2+17(x2+x)+60
(x2+xy+y2)(x2+xy+2y2)-12y4
x2-2xy-3y2+2x+10y-8
(a-b)x2+2ax+a+b
x4-5x2+4
4x4-65x2y2+16y4
a6-7a3b3-8b6
6a4-5a3-4a2
4a6-37a4b2+9a2b4
(x2-3)2-4x2
x2(x-2)2-9
(3x2+2x+1)2-(2x2+3x+3)2
(x2+x)2+17(x2+x)+60
(x2+xy+y2)(x2+xy+2y2)-12y4
x2-2xy-3y2+2x+10y-8
(a-b)x2+2ax+a+b
▼优质解答
答案和解析
x^4 - 5x" + 4
= (x")" - x" - 4x" + 4
= x"( x" - 1 ) - 4( x" - 1 )
= ( x" - 1 )( x" - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
4x^4 - 65x"y" + 16y^4
= 4x^4 - x"y" - 64x"y" + 16y^4
= x"( 4x" - y" ) - 16y"( 4x" - y" )
= ( x" - 16y" )( 4x" - y" )
= ( x - 4y )( x + 4y )( 2x - y )( 2x + y )
a^6 - 7a"'b"' - 8b^6
= a^6 - 8a"'b"' + a"'b"' - 8b^6
= a"'( a"' - 8b"' ) + b"'( a"' - 8b"' )
= ( a"' + b"' )( a"' - 8b"' )
= ( a + b )( a" - ab + b" )( a - 2b )( a" + 2ab + 4b" )
= ( a + b )( a - 2b )( a" - ab + b" )( a" + 2ab + 4b" )
6a^4 - 5a"' - 4a"
= a"( 6a" - 5a - 4 )
= a"( 6a" + 3a - 8a - 4 )
= a"[ 3a( 2a + 1 ) - 4( 2a + 1 ) ]
= a"( 2a + 1 )( 3a - 4 )
4a^6 - 37a^4b" + 9a"b^4
= a"( 4a^4 - 37a"b" + 9b^4 )
= a"( 4a^4 - a"b" - 36a"b" + 9b^4 )
= a"[ a"( 4a" - b" ) - 9b"( 4a" - b" ) ]
= a"( a" - 9b" )( 4a" - b" )
= a"( a + 3b )( a - 3b )( 2a + b )( 2a - b )
( x" - 3 )" - 4x"
= ( x" - 3 )" - ( 2x )"
= ( x" + 2x - 3 )( x" - 2x - 3 )
= ( x" - x + 3x - 3 )( x" + x - 3x - 3 )
= ( x - 1 )( x + 3 )( x + 1 )( x - 3 )
x"( x - 2 )" - 9
= x"( x - 2 )" - 3"
= ( x" - 2x + 3 )( x" - 2x - 3 )
= ( x - 1 )( x + 1 )( x - 3 )( x + 3 )
( 3x" + 2x + 1 )" - ( 2x" + 3x + 3 )"
= ( 3x" + 2x + 1 + 2x" + 3x + 3 )( 3x" + 2x + 1 - 2x" - 3x - 3 )
= ( 5x" + 5x + 4 )( x" - x - 2 )
= ( 5x" + 5x + 4 )( x" + x - 2x - 2 )
= ( 5x" + 5x + 4 )[ x( x + 1 ) - 2( x + 1 ) ]
= ( 5x" + 5x + 4 )( x + 1 )( x - 2 )
( x" + x )" + 17( x" + x ) + 60
= ( x" + x )" + 12( x" + x ) + 5( x" + x ) + 60
= ( x" + x )( x" + x + 12 ) + 5( x" + x + 12 )
= ( x" + x + 5 )( x" + x + 12 )
( x" + xy + y" )( x" + xy + 2y" ) - 12y^4
= ( x" + xy + y" )( x" + xy + y" + y" ) - 12y^4
= ( x" + xy + y" )" + y"( x" + xy + y" ) - 12y^4
= ( x" + xy + y" )" + 4y"( x" + xy + y" ) - 3y"( x" + xy + y" ) - 12y^4
= ( x" + xy + y" )( x" + xy + y" + 4y" ) - 3y"( x" + xy + y" + 4y" )
= ( x" + xy + y" - 3y" )( x" + xy + y" + 4y" )
= ( x" + xy - 2y" )( x" + xy + 5y" )
= ( x" + 2xy - xy - 2y" )( x" + xy + 5y" )
= [ x( x + 2y ) - y( x + 2y ) ]( x" + xy + 5y" )
= ( x - y )( x + 2y )( x" + xy + 5y" )
x" - 2xy - 3y" + 2x + 10y - 8
= x" - 2xy + y" - 4y" + 2x - 2y + 12y - 8
= ( x - y )" + 2( x - y ) + 1 - 4y" + 12y - 9
= [ ( x - y ) + 1 ]" - [ ( 2y )" - 6( 2y ) + 3" ]
= ( x - y + 1 )" - ( 2y - 3 )"
= ( x - y + 1 + 2y - 3 )( x - y + 1 - 2y + 3 )
= ( x + y - 2 )( x - 3y + 4 )
( a - b )x" + 2ax + a + b
= ax" + 2ax + a - bx" + b
= a( x" + 2x + 1 ) - b( x" - 1 )
= a( x + 1 )" - b( x - 1 )( x + 1 )
= ( x + 1 )[ ( ax + a ) - ( bx - b ) ]
= ( x + 1 )( ax - bx + a + b )
= (x")" - x" - 4x" + 4
= x"( x" - 1 ) - 4( x" - 1 )
= ( x" - 1 )( x" - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
4x^4 - 65x"y" + 16y^4
= 4x^4 - x"y" - 64x"y" + 16y^4
= x"( 4x" - y" ) - 16y"( 4x" - y" )
= ( x" - 16y" )( 4x" - y" )
= ( x - 4y )( x + 4y )( 2x - y )( 2x + y )
a^6 - 7a"'b"' - 8b^6
= a^6 - 8a"'b"' + a"'b"' - 8b^6
= a"'( a"' - 8b"' ) + b"'( a"' - 8b"' )
= ( a"' + b"' )( a"' - 8b"' )
= ( a + b )( a" - ab + b" )( a - 2b )( a" + 2ab + 4b" )
= ( a + b )( a - 2b )( a" - ab + b" )( a" + 2ab + 4b" )
6a^4 - 5a"' - 4a"
= a"( 6a" - 5a - 4 )
= a"( 6a" + 3a - 8a - 4 )
= a"[ 3a( 2a + 1 ) - 4( 2a + 1 ) ]
= a"( 2a + 1 )( 3a - 4 )
4a^6 - 37a^4b" + 9a"b^4
= a"( 4a^4 - 37a"b" + 9b^4 )
= a"( 4a^4 - a"b" - 36a"b" + 9b^4 )
= a"[ a"( 4a" - b" ) - 9b"( 4a" - b" ) ]
= a"( a" - 9b" )( 4a" - b" )
= a"( a + 3b )( a - 3b )( 2a + b )( 2a - b )
( x" - 3 )" - 4x"
= ( x" - 3 )" - ( 2x )"
= ( x" + 2x - 3 )( x" - 2x - 3 )
= ( x" - x + 3x - 3 )( x" + x - 3x - 3 )
= ( x - 1 )( x + 3 )( x + 1 )( x - 3 )
x"( x - 2 )" - 9
= x"( x - 2 )" - 3"
= ( x" - 2x + 3 )( x" - 2x - 3 )
= ( x - 1 )( x + 1 )( x - 3 )( x + 3 )
( 3x" + 2x + 1 )" - ( 2x" + 3x + 3 )"
= ( 3x" + 2x + 1 + 2x" + 3x + 3 )( 3x" + 2x + 1 - 2x" - 3x - 3 )
= ( 5x" + 5x + 4 )( x" - x - 2 )
= ( 5x" + 5x + 4 )( x" + x - 2x - 2 )
= ( 5x" + 5x + 4 )[ x( x + 1 ) - 2( x + 1 ) ]
= ( 5x" + 5x + 4 )( x + 1 )( x - 2 )
( x" + x )" + 17( x" + x ) + 60
= ( x" + x )" + 12( x" + x ) + 5( x" + x ) + 60
= ( x" + x )( x" + x + 12 ) + 5( x" + x + 12 )
= ( x" + x + 5 )( x" + x + 12 )
( x" + xy + y" )( x" + xy + 2y" ) - 12y^4
= ( x" + xy + y" )( x" + xy + y" + y" ) - 12y^4
= ( x" + xy + y" )" + y"( x" + xy + y" ) - 12y^4
= ( x" + xy + y" )" + 4y"( x" + xy + y" ) - 3y"( x" + xy + y" ) - 12y^4
= ( x" + xy + y" )( x" + xy + y" + 4y" ) - 3y"( x" + xy + y" + 4y" )
= ( x" + xy + y" - 3y" )( x" + xy + y" + 4y" )
= ( x" + xy - 2y" )( x" + xy + 5y" )
= ( x" + 2xy - xy - 2y" )( x" + xy + 5y" )
= [ x( x + 2y ) - y( x + 2y ) ]( x" + xy + 5y" )
= ( x - y )( x + 2y )( x" + xy + 5y" )
x" - 2xy - 3y" + 2x + 10y - 8
= x" - 2xy + y" - 4y" + 2x - 2y + 12y - 8
= ( x - y )" + 2( x - y ) + 1 - 4y" + 12y - 9
= [ ( x - y ) + 1 ]" - [ ( 2y )" - 6( 2y ) + 3" ]
= ( x - y + 1 )" - ( 2y - 3 )"
= ( x - y + 1 + 2y - 3 )( x - y + 1 - 2y + 3 )
= ( x + y - 2 )( x - 3y + 4 )
( a - b )x" + 2ax + a + b
= ax" + 2ax + a - bx" + b
= a( x" + 2x + 1 ) - b( x" - 1 )
= a( x + 1 )" - b( x - 1 )( x + 1 )
= ( x + 1 )[ ( ax + a ) - ( bx - b ) ]
= ( x + 1 )( ax - bx + a + b )
看了一些初中的因式分解的题目,求大...的网友还看了以下:
对于一元二次方程ax^2+bx+c=0(a≠0),下列说法:(1)若x=c是一元二次方程ax^2+ 2020-04-05 …
合并同类项(分值高)(数学)(1)3mn^2-6n^2m+6m^2n-3nm^2(2)-3分之7Y 2020-05-13 …
高一二次函数题,要过程,谢谢!1,求函数f(x)=sin2平方x+cosx-1/2(x∈R)的值域 2020-05-20 …
因式分解:1.1+a^2-9b^2-2a2.2ax^2-6ax-8a解方程:(a^2-4)(a/a 2020-06-03 …
关于曲面积分~∫∫s(xy+yz+zx)ds,其中s为锥面z=(x^2+y^2)^(1/2)被柱面 2020-06-15 …
1,写出一个二元一次方程,使它的其中一个解是X=1Y=2注意:二元一次方程,并不是组~2,{ax- 2020-07-20 …
分解因式x的4次+x的2次-2ax-a的平方分解因式1.x的4次方+x的2次方-2ax-a的平方2 2020-08-02 …
可以来自网络,准确PLEASE)c-abcd+ac^2-bda^5-a^4+a^3+2a^2+2a+ 2020-11-01 …
已知有序实数对(a,b)满足a满足a属于[0,3],b属于[0,2],则关于X的一元二次方程X^2+ 2020-12-05 …
已知:如图,抛物线y=ax^2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于A,B,点A 2021-01-10 …