早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于曲面积分~∫∫s(xy+yz+zx)ds,其中s为锥面z=(x^2+y^2)^(1/2)被柱面x^2+y^2=2ax所截的部分.

题目详情
关于曲面积分~
∫∫s(xy+yz+zx)ds,其中s为锥面z=(x^2+y^2)^(1/2)被柱面x^2+y^2=2ax所截的部分.
▼优质解答
答案和解析
∵αz/αx=x/√(x²+y²),αz/αy=y/√(x²+y²)
∴ds=√[1+(αz/αx)²+(αz/αy)²]dxdy
=√2dxdy
故 原式=∫∫(xy+yz+zx)√2dxdy
=√2∫dθ∫(r²sinθcosθ+r²sinθ+r²cosθ)rdr (做极坐标变换)
=4√2a^4∫(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4√2a^4∫[((cosθ)^5+(cosθ)^4)sinθ+(1-2sin²θ+(sinθ)^4)cosθ]dθ
=(4√2a^4)*[2(1-2/3+1/5)]
=64√2a^4/15.