早教吧作业答案频道 -->数学-->
已知点M(-3,5),N(2,15),在直线l:3x-4y+4=0上找一点P,使|PM|+|PN|最小,并求出最小
题目详情
已知点M(-3,5),N(2,15),在直线l:3x-4y+4=0上找一点P,使|PM|+|PN|最小,并求出最小
▼优质解答
答案和解析
显然M、N在直线的同侧.
设点M关于直线l的对称点为A,则PM+PN=PA+PN
由于两点之间线段最短,因此只需连结AN两点,线段AN与直线l的交点即为所求的P点:
设A(s,t)
由于A与M关于直线对称,所以有:
(t-5)/(s+3)=-4/3
3(s-3)/2-4(t+5)/2+4=0
联立两方程解得(s,t)=(3,-3)
由于A、N两点已知,可求得AN的直线方程为:
y=-18x+51
该直线与直线l联立:
y=-18x+51
3x-4y+4=0
解二元一次方程组得:(x,y)=(8/3,3)
所以要求的点P为(8/3,3)
故由两点间的距离公式可得
PM+PN的最小值为PA+PN=AN=根号下[(3-2)^2+(-3-15)^2]=5根号下[13]
该题的解题核心就是充分利用轴对称的关系转换点的位置来进行等效处理.
希望这个解题方法能够给你帮助:-D
设点M关于直线l的对称点为A,则PM+PN=PA+PN
由于两点之间线段最短,因此只需连结AN两点,线段AN与直线l的交点即为所求的P点:
设A(s,t)
由于A与M关于直线对称,所以有:
(t-5)/(s+3)=-4/3
3(s-3)/2-4(t+5)/2+4=0
联立两方程解得(s,t)=(3,-3)
由于A、N两点已知,可求得AN的直线方程为:
y=-18x+51
该直线与直线l联立:
y=-18x+51
3x-4y+4=0
解二元一次方程组得:(x,y)=(8/3,3)
所以要求的点P为(8/3,3)
故由两点间的距离公式可得
PM+PN的最小值为PA+PN=AN=根号下[(3-2)^2+(-3-15)^2]=5根号下[13]
该题的解题核心就是充分利用轴对称的关系转换点的位置来进行等效处理.
希望这个解题方法能够给你帮助:-D
看了已知点M(-3,5),N(2,...的网友还看了以下:
问两道圆锥曲线的题1.已知定点A[-2,√3],F是椭圆[x^2/16]+[y^2/12]=1的右焦 2020-03-30 …
已知圆C:x^2+y^2=4,将其作伸缩变换X'=2Xy'=y得到曲线P,若点R(1,0),点Q是 2020-05-12 …
给定复杂几何条件下求点的坐标.(1)已知点A(1,2),P在x轴上,且∠APO=45°,直接写出P 2020-05-13 …
33.14、已知P是抛物线y∧2=2x上的一个动点,过P作圆(x-3) ∧2+y∧2=1的切线,切 2020-05-16 …
已知P在直线l:x+y-1=0上,Q在圆C:(x-2)2+(y-2)2=1上.(1)过P作圆C的切 2020-06-03 …
已知P为椭圆上一点已知P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1,F2为 2020-06-30 …
图象顶点M(1,16)且与x轴相交于2点,已知两点相距8,求二次函数解析式 2020-07-12 …
已知点O(0,0)和点B(m,0)(m>0),动点P到O,B的距离比为2∶1,求P点轨迹和P点在什 2020-07-22 …
已知动圆P过点N(2,0)并且与圆M:(X+2)^2+Y^2=4相外切,动圆圆心P的轨迹为W,过点 2020-07-26 …
已知圆c的圆心在坐标原点,且过点m(1,根号3)(1)求圆方程(2)已知点p是圆c上动点试求点p到 2020-07-26 …