早教吧作业答案频道 -->其他-->
计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是L是在抛物线2x=πy^2上由点(0.0)到(π/2.1)的一段弧.
题目详情
计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是
L是在抛物线2x=πy^2上由点(0.0)到(π/2.1)的一段弧.
L是在抛物线2x=πy^2上由点(0.0)到(π/2.1)的一段弧.
▼优质解答
答案和解析
计算曲线积分:
∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
其中L是在抛物线2x = πy^2上由点(0,0)到(π/2,1)的一段弧.
——————————————————————————————————————————
补线:
L1:x = π/2、逆时针方向、dx = 0、由y = 0变化到y = 1
L2:y = 0、逆时针方向、dy = 0、由x = 0变化到x = π/2
由于L是顺时针方向,现在设L⁻是L的逆时针方向
∮(L⁻+L1+L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫∫D [∂/∂x (1 - 2ysinx + 3x^2y^2) - ∂/∂y (2xy^3 - y^2cosx)] dxdy、用Green公式
= ∫∫D [(- 2ycosx + 6xy^2) - (6xy^2 - 2ycosx)] dxdy
= ∫∫D (- 2ycosx + 6xy^2 - 6xy^2 + 2ycosx) dxdy
= 0
而∫(L1) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫(0→1) [0 + 1 - 2y + 3(π/2)^2y^2] dy
= ∫(0→1) [1 - 2y + (3/4)π^2 * y^2] dy
= y - y^2 + (3/4)π^2 * (1/3)y^3:(0→1)
= 1 - 1 + (3/4)π^2 * 1/3
= (1/4)π^2
而∫(L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫(L2) 0 dx
= 0
于是∫(L⁻) + ∫(L1) + ∫(L2) = ∮(L⁻+L1+L2)
∫(L⁻) + (1/4)π^2 + 0 = 0
∫(L⁻) = - (1/4)π^2
∫(L) = (1/4)π^2
即原式∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy = (1/4)π^2
∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
其中L是在抛物线2x = πy^2上由点(0,0)到(π/2,1)的一段弧.
——————————————————————————————————————————
补线:
L1:x = π/2、逆时针方向、dx = 0、由y = 0变化到y = 1
L2:y = 0、逆时针方向、dy = 0、由x = 0变化到x = π/2
由于L是顺时针方向,现在设L⁻是L的逆时针方向
∮(L⁻+L1+L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫∫D [∂/∂x (1 - 2ysinx + 3x^2y^2) - ∂/∂y (2xy^3 - y^2cosx)] dxdy、用Green公式
= ∫∫D [(- 2ycosx + 6xy^2) - (6xy^2 - 2ycosx)] dxdy
= ∫∫D (- 2ycosx + 6xy^2 - 6xy^2 + 2ycosx) dxdy
= 0
而∫(L1) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫(0→1) [0 + 1 - 2y + 3(π/2)^2y^2] dy
= ∫(0→1) [1 - 2y + (3/4)π^2 * y^2] dy
= y - y^2 + (3/4)π^2 * (1/3)y^3:(0→1)
= 1 - 1 + (3/4)π^2 * 1/3
= (1/4)π^2
而∫(L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy
= ∫(L2) 0 dx
= 0
于是∫(L⁻) + ∫(L1) + ∫(L2) = ∮(L⁻+L1+L2)
∫(L⁻) + (1/4)π^2 + 0 = 0
∫(L⁻) = - (1/4)π^2
∫(L) = (1/4)π^2
即原式∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy = (1/4)π^2
看了计算曲线积分:∫(L)(2xy...的网友还看了以下:
数分里、微分形式交换位置要变号、而改变积分顺序的时候却不变号?比如dx^dy=-dy^dx则∫dx 2020-05-16 …
交换二次积分顺序∫dx∫f(x,y)dy,其实只要告诉我∫dy部分中,dx的积分上下限就可以了~ 2020-05-17 …
求通解两边对什么积分以前俩边积分f(x)=g(x)对X积分ff(x)dx=ff(x)dx对yff( 2020-06-17 …
请高手用MATLAB帮忙解下微分方程组教下:Dy(1)=y(2);Dy(2)=y(3)^2*u*A 2020-07-21 …
变换积分次序∫(下0上1)dy∫(下0上y)f(x,y)dy 2020-07-22 …
高数:二重积分设f(x,y)为连续函数,则二次积分∫(积分上限a,积分下限0)dx∫(积分上限x, 2020-07-31 …
对于积分上限函数∫(a,t)f(y)dy,知道被积函数是f(t).那么对于∫(a,t)f(x+y) 2020-08-02 …
对弧段L的积分求在弧段L上的积分?被积函数为x^2+y^2,其中L为x^2+y^2+z^2=1与x 2020-08-02 …
定积分计算∫l/(d^2/4+l^2)^(3/2)*dl在[0,l]上的积分能计算吗?d是常数∫L 2020-08-02 …
我这样换积分次序是不是对的∫∏(积分上限)0(积分下限)dx∫sinx(积分上限)0(积分下限)f( 2020-12-05 …