早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设实数x,y,z适合9x3=8y3=7z3,9x+8y+7z=1,则3(9x)2+(8y)2+(7z)2=,9(9x2)4+(8y2)4+(7z2)4=

题目详情
设实数x,y,z适合9x 3 =8y 3 =7z 3
9
x
+
8
y
+
7
z
=1 ,则
3 (9x) 2 + (8y) 2 + (7z) 2
=______,
9 (9 x 2 ) 4 + (8 y 2 ) 4 + (7 z 2 ) 4
=______.
▼优质解答
答案和解析
设9x 3 =8y 3 =7z 3 =k 3 ,则
x=
k
3 9
,y=
k
3 8
,z=
k
3 7

从而1=
9
x
+
8
y
+
7
z
=
1
k
(9
3 9
+8
3 8
+7
3 7
),
故k= 9
3 9
+8
3 8
+7
3 7

3 (9x) 2 +  (8y) 2 + (7z) 2

=
3 k 2 (
3 9 4
+
3 8 4
+
3 7 4
)  

=
3 k 3

=k,
9 (9 x 2 ) 4 + (8 y 2 ) 4 + (7 z 2 ) 4

=
9 k 8 (
3 9 4
+
3 8 4
+
3 7 4
)  

=
9 k 8 k

=k.
故答案为: 9
3 9
+8
3 8
+7
3 7
9
3 9
+8
3 8
+7
3 7