早教吧作业答案频道 -->数学-->
evaluate:f5/(6x+13+x^2)dxevaluate:f(2x+1)/(x+1)evaluate:fx((x^2)-1)^4dxevaluate:f(x^2)^(1/5)evaluate:f3(cscx)^2evaluate:f((x^4)-(x^3))/(x^2)evaluate:f((tanx)(secx)^3)/(1+(tanx)^2)dxevaluate是求解的意思急用
题目详情
evaluate:f 5/(6x+13+x^2) dx
evaluate:f (2x+1)/(x+1)
evaluate:f x((x^2)-1)^4 dx
evaluate:f (x^2)^(1/5)
evaluate:f 3(cscx)^2
evaluate:f ((x^4)-(x^3))/(x^2)
evaluate:f((tanx)(secx)^3)/(1+(tanx)^2) dx
evaluate 是求解的意思
急用
evaluate:f (2x+1)/(x+1)
evaluate:f x((x^2)-1)^4 dx
evaluate:f (x^2)^(1/5)
evaluate:f 3(cscx)^2
evaluate:f ((x^4)-(x^3))/(x^2)
evaluate:f((tanx)(secx)^3)/(1+(tanx)^2) dx
evaluate 是求解的意思
急用
▼优质解答
答案和解析
∫5dx/[(x+3)^2+4]=10∫d(x/2+3/2)/[(x/2+3/2)^2+1]=10arctan(x/2+3/2)+C
∫(2x+1)dx/(x+1)=2x-ln(x+1)+C
∫xdx/(x^2-1)^4=(1/2)*(-1/3)[1/(x^2-1)^3]+C
∫(x^2)^(1/5)dx =∫x^(2/5)dx=(5/7)x^(7/5)+C
∫3(cscx)^2dx=3∫dx/(sinx)^2=3∫[(sinx)^2+(cosx)^2]dx/sinx^2
=-3∫(sinxdcosx-cosxdsinx)/(sinx)^2=-3(cosx/sinx)+C
∫(x^4-x^3)dx/x^2=∫x^2dx-∫xdx=x^3/3-x^2/2+C
∫tanx(secx)^3 dx/[1+(tanx)^2]=∫tanx(secx)^3dx/(secx)^2=∫tanxsecxdx
=∫sinxdx/(cosx)^2=-∫dcosx/(cosx)^2=1/cosx+C=secx+C
∫(2x+1)dx/(x+1)=2x-ln(x+1)+C
∫xdx/(x^2-1)^4=(1/2)*(-1/3)[1/(x^2-1)^3]+C
∫(x^2)^(1/5)dx =∫x^(2/5)dx=(5/7)x^(7/5)+C
∫3(cscx)^2dx=3∫dx/(sinx)^2=3∫[(sinx)^2+(cosx)^2]dx/sinx^2
=-3∫(sinxdcosx-cosxdsinx)/(sinx)^2=-3(cosx/sinx)+C
∫(x^4-x^3)dx/x^2=∫x^2dx-∫xdx=x^3/3-x^2/2+C
∫tanx(secx)^3 dx/[1+(tanx)^2]=∫tanx(secx)^3dx/(secx)^2=∫tanxsecxdx
=∫sinxdx/(cosx)^2=-∫dcosx/(cosx)^2=1/cosx+C=secx+C
看了evaluate:f5/(6x...的网友还看了以下:
已知点P在曲线y=4/(e^x+10)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()A[ 2020-04-11 …
求极限lim[cosx-e^(-x^2/2)]/x^4 其中x趋向于0.我的做法为什么错了:lim 2020-05-16 …
已知X~N(-2,0.4^2)求E(X+3)^216我觉得应该用D(x+3)=E(X+3)²-[E 2020-07-18 …
y=4/(e的x次方+1)求导,一点不懂,第二行末尾的(e^x+1)'怎么来的?利用复合函数求导法 2020-07-21 …
已知函数f(x)=(x2-3x+9/4)e的x次方,其中e是自然对数的底数.已知函数f(x)=(x 2020-08-02 …
1e后面有4格2空一个e后面有3格3空2格e空2格4空3个e空1格5空4格e空1格6前面空5哥e后面 2020-10-30 …
积分的问题∫∫e^(x^2+y^2)∫∫e^(x^2+y^2)=∫(0,π/2)dθ∫(0,R)re 2020-10-31 …
求证e^i(4π/n)+e^i(8π/n)+...+e^i4(n-1)π/n+e^i(4nπ/n)= 2020-11-01 …
无穷小的阶为什么e^(x^4-2x^2)-1(x趋于0)是x的2阶无穷小啊答案上写的是:e^(x^4 2020-11-10 …
已知文法G:(1)E→E+T|T(2)T→T*F|F(3)F→P↑F|P(4)P→(E)|i1.已知 2020-12-07 …