早教吧作业答案频道 -->数学-->
设f'(cos^x)=sin^x且f(0)=0,则f(x)=?注^表平方非常晕f’(cos^x)=sin^x=1-cos^x,令t=cos^x所以f'(t)=1-tf(x)=x-x^2/2+c我很疑惑对f(cos^x),难道不需要对cos^x求内导吗?怎么直接就代换成x了?顺便f'(e^x)=1+x,则f(x)=?同样
题目详情
设f'(cos^x)=sin^x且f(0)=0,则f(x)=?
注 ^表平方
非常晕
f’(cos^x)=sin^x=1-cos^x,
令t=cos^x
所以f'(t)=1-t
f(x)=x-x^2/2+c
我很疑惑
对f(cos^x),难道不需要对cos^x求内导吗?怎么直接就代换成x了?
顺便
f'(e^x)=1+x,则f(x)=?
同样的问题,答案xlnx+c,我觉得是lnx+(lnx)^2/2+c,可以带入验证下,我觉得我的对啊~
我明白楼下朋友的意思,但是你还是没能说明为什么不需要考虑内导啊。就是积分也应该是对x而不是cosx。更何况带入验证答案也不对啊
注 ^表平方
非常晕
f’(cos^x)=sin^x=1-cos^x,
令t=cos^x
所以f'(t)=1-t
f(x)=x-x^2/2+c
我很疑惑
对f(cos^x),难道不需要对cos^x求内导吗?怎么直接就代换成x了?
顺便
f'(e^x)=1+x,则f(x)=?
同样的问题,答案xlnx+c,我觉得是lnx+(lnx)^2/2+c,可以带入验证下,我觉得我的对啊~
我明白楼下朋友的意思,但是你还是没能说明为什么不需要考虑内导啊。就是积分也应该是对x而不是cosx。更何况带入验证答案也不对啊
▼优质解答
答案和解析
你主要是把概念搞混了.请注意以下:
f'[g(x)]与{f[g(x)]}'的区别.
f'[g(x)]=df[g(x)]/dg(x) 是对g(x)求导数,而不是对x.可以把g(x)直接看成一个变量t,相当于对t求导,而t与x的关系不需要考虑.
{f[g(x)]}'=f'[g(x)]*g'(x) 是对x求导.
因此,你看原题,给的是什么,就应该很好理解了:是对COSx求导,而不是对x求导.
理解了吗?不理解没关系,把形式记住就行了,以后见着什么形式按什么公式做.
f'[g(x)]与{f[g(x)]}'的区别.
f'[g(x)]=df[g(x)]/dg(x) 是对g(x)求导数,而不是对x.可以把g(x)直接看成一个变量t,相当于对t求导,而t与x的关系不需要考虑.
{f[g(x)]}'=f'[g(x)]*g'(x) 是对x求导.
因此,你看原题,给的是什么,就应该很好理解了:是对COSx求导,而不是对x求导.
理解了吗?不理解没关系,把形式记住就行了,以后见着什么形式按什么公式做.
看了设f'(cos^x)=sin^...的网友还看了以下:
已知函数f(x)=x+b的图象与函数g(x)=x2+3x+2的图象相切,记F(x)=f(x)g(x 2020-05-17 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
f(x)=e^x+∫tf(t)dt-x∫f(t)dt解f'(x)=e^x+xf(x)-∫f(t)d 2020-07-31 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
设函数f(x)=x+4/x-6(x>0)和g(x)=-x^2+ax+m(a,m均为实数),且对任意的 2020-11-16 …
文科函数,急1函数f(x)=x^3-a^x-1,若f(x)在实数集R上单调递增,求实数a的取值范围? 2020-11-21 …
求f(x)解析式1.已知f(1+1/x)=x2+1/x2+3/x,求f(x)解析式2.已知f(求f( 2020-12-08 …
已知函数f(x)对于任意x,y属于R,总有f(x+y)=f(x)+f(y)-1,X>0时.已知函数f 2020-12-22 …