早教吧作业答案频道 -->数学-->
一道英文数学题Let(s,t)beapointinthefirstquadrant(notonacoordinateaxis)thatisonthegraphofy=9−x2andletLbealinetangenttoy=9−x2at(s,t).ThenLwillcutoffatriangleinthefirstquadrant.Findthe(s,t
题目详情
一道英文数学题
Let (s,t) be a point in the first quadrant (not on a coordinate axis) that is on the graph of y = 9−x2
and let L be a line tangent to y = 9−x2 at (s,t).Then L will cut off a triangle in the first quadrant.
Find the (s,t) that corresponds to the triangle of that type that has the minimum area.What is
the value of
Let (s,t) be a point in the first quadrant (not on a coordinate axis) that is on the graph of y = 9−x2
and let L be a line tangent to y = 9−x2 at (s,t).Then L will cut off a triangle in the first quadrant.
Find the (s,t) that corresponds to the triangle of that type that has the minimum area.What is
the value of
▼优质解答
答案和解析
L是y=9-x²在(s,t)处的切线,导数y‘=-2x,所以L斜率为-2s,L方程为y-t=-2s(x-s),即y=-2sx+2s²+t
且(s,t)在抛物线上,有t=9-s²,所以L方程化简为:y=-2sx+s²+9
L与坐标轴的交点为((s²+9)/2s,0)(0,s²+9),
由于L与坐标轴围成的三角形在第一象限
则三角形面积S=1/2 *(s²+9)/2s * (s²+9)=(s²+9)²/4s=(s³+18s+81/s)/4
S'=(3s²+18-81/s²)/4
当S'=0时,即3s²+18-81/s²=0,即(s+9/s)(3s-9/s)=0,解得s=±√3,又因为(s,t)在第一象限,所以s>0,所以s=√3,可以验证下,当0√3时,S’>0,S单增,所以在s=√3,面积取最小值.
且(s,t)在抛物线上,有t=9-s²,所以L方程化简为:y=-2sx+s²+9
L与坐标轴的交点为((s²+9)/2s,0)(0,s²+9),
由于L与坐标轴围成的三角形在第一象限
则三角形面积S=1/2 *(s²+9)/2s * (s²+9)=(s²+9)²/4s=(s³+18s+81/s)/4
S'=(3s²+18-81/s²)/4
当S'=0时,即3s²+18-81/s²=0,即(s+9/s)(3s-9/s)=0,解得s=±√3,又因为(s,t)在第一象限,所以s>0,所以s=√3,可以验证下,当0
看了一道英文数学题Let(s,t)...的网友还看了以下:
求x^n-a^n的公式~x^n-a^n=(x-a)[x^(n-1)+ax^(n-2)+...+a^ 2020-04-12 …
求x^n-a^n的公式啊~x^n-a^n=(x-a)[x^(n-1)+ax^(n-2)+...+a 2020-04-12 …
化学题2242-6-377某元素原子的质量数为A,它的离子R^n-核外共有x个电子,则该元素原子核 2020-05-13 …
1.公差不为零的等差数列的第2、3、6项构成等比数列,则公比为?2.二次方程a(n) x^2-a( 2020-05-13 …
关于函数导数的问题1、求函数f(x)=x^n(n属于正自然数)在x=a处的导数.f'(a)=(x^ 2020-07-21 …
C语言选择题2设有下列函数原型和变量定义语句,则合法的函数调用语句是:intfunc(inta[] 2020-08-01 …
秦九韶算法求乘方次数若用秦九韶算法求n次多项式f(x)=a[n]x^n+a[n-1]x^(n-1) 2020-08-03 …
1.若(a^n*b^m*b)³=a^9*b^15,求2^m+n的值.2.计算;a^n-5(a^n+1 2020-11-01 …
求证:x^n-a^n=(x-a)*[x^(n-1)+a*x^(n-2)+a^2*x^(n-3)+.. 2020-11-15 …
x^n-a^n=(x-a)[x^(n-1)+x^(n-2)a+...+xa^(n-2)+a^(n-1 2020-11-15 …