早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(Ⅰ)集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={3,-1},M∩N={3},求实数m的值.(Ⅱ)已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+32+42=16×4×5×9,由此猜想12+22+…+n2(n∈N*)的表达

题目详情
(Ⅰ)集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={3,-1},M∩N={3},求实数m的值.
(Ⅱ)已知12=
1
6
×1×2×3,12+22=
1
6
×2×3×5,12+22+32=
1
6
×3×4×7,12+22+32+42=
1
6
×4×5×9,由此猜想12+22+…+n2(n∈N*)的表达式并用数学归纳法证明.
▼优质解答
答案和解析
(Ⅰ)由M={1,2,(m2-3m-1)+(m2-5m-6)i},N={3,-1},
且M∩N={3},
得(m2-3m-1)+(m2-5m-6)i=3,
所以,m2-3m-1=3且m2-5m-6=0,---(2分)
解得m=-1;---(4分)
(Ⅱ)归纳猜想,得12+22+…+n2=
n(n+1)(2n+1)
6
(n∈N*);---(6分)
证明:(1)当n=1时,12=
1
6
×1×2×3,猜想成立;
(2)假设n=k(k≥1,且k∈N*)时,猜想成立,
即12+22+…+k2=
k(k+1)(2k+1)
6

那么当n=k+1时,
12+22+…+k2=
k(k+1)(2k+1)
6
+(k+1)2
=
(k+1)(k+2)(2k+3)
6

=
(k+1)[(k+1)+1][2k(+1)+1]
6
,(k∈N*),
所以,当n=k+1时,猜想成立;
由(1)(2)可知,对任意的正整数n,猜想都成立.---(12分)